在精益 4 中实现马森-斯托瑟定理及其推论的形式化

Jineon Baek, Seewoo Lee
{"title":"在精益 4 中实现马森-斯托瑟定理及其推论的形式化","authors":"Jineon Baek, Seewoo Lee","doi":"arxiv-2408.15180","DOIUrl":null,"url":null,"abstract":"The ABC conjecture implies many conjectures and theorems in number theory,\nincluding the celebrated Fermat's Last Theorem. Mason-Stothers Theorem is a\nfunction field analogue of the ABC conjecture that admits a much more\nelementary proof with many interesting consequences, including a polynomial\nversion of Fermat's Last Theorem. While years of dedicated effort are expected\nfor a full formalization of Fermat's Last Theorem, the simple proof of\nMason-Stothers Theorem and its corollaries calls for an immediate\nformalization. We formalize an elementary proof of by Snyder in Lean 4, and also formalize\nmany consequences of Mason-Stothers, including (i) non-solvability of\nFermat-Cartan equations in polynomials, (ii) non-parametrizability of a certain\nelliptic curve, and (iii) Davenport's Theorem. We compare our work to existing\nformalizations of Mason-Stothers by Eberl in Isabelle and Wagemaker in Lean 3\nrespectively. Our formalization is based on the mathlib4 library of Lean 4, and\nis currently being ported back to mathlib4.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formalizing Mason-Stothers Theorem and its Corollaries in Lean 4\",\"authors\":\"Jineon Baek, Seewoo Lee\",\"doi\":\"arxiv-2408.15180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ABC conjecture implies many conjectures and theorems in number theory,\\nincluding the celebrated Fermat's Last Theorem. Mason-Stothers Theorem is a\\nfunction field analogue of the ABC conjecture that admits a much more\\nelementary proof with many interesting consequences, including a polynomial\\nversion of Fermat's Last Theorem. While years of dedicated effort are expected\\nfor a full formalization of Fermat's Last Theorem, the simple proof of\\nMason-Stothers Theorem and its corollaries calls for an immediate\\nformalization. We formalize an elementary proof of by Snyder in Lean 4, and also formalize\\nmany consequences of Mason-Stothers, including (i) non-solvability of\\nFermat-Cartan equations in polynomials, (ii) non-parametrizability of a certain\\nelliptic curve, and (iii) Davenport's Theorem. We compare our work to existing\\nformalizations of Mason-Stothers by Eberl in Isabelle and Wagemaker in Lean 3\\nrespectively. Our formalization is based on the mathlib4 library of Lean 4, and\\nis currently being ported back to mathlib4.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ABC 猜想隐含了数论中的许多猜想和定理,包括著名的费马最后定理。马森-斯托瑟定理是 ABC 猜想的一个函数场类似物,它允许更基本的证明,并有许多有趣的结果,包括费马最后定理的多项式反演。虽然费马最后定理的完全形式化还需要多年的努力,但马森-斯托瑟定理及其推论的简单证明却需要立即形式化。我们在 Lean 4 中形式化了斯奈德的一个基本证明,还形式化了马森-斯托瑟定理的许多后果,包括 (i) 多项式中费马-卡尔坦方程的不可解性,(ii) 某条椭圆曲线的非参数化性,以及 (iii) 达文波特定理。我们将我们的工作与 Eberl 在 Isabelle 和 Wagemaker 在 Lean 3 中对 Mason-Stothers 的现有形式化进行比较。我们的形式化基于 Lean 4 的 mathlib4 库,目前正在向 mathlib4 移植。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formalizing Mason-Stothers Theorem and its Corollaries in Lean 4
The ABC conjecture implies many conjectures and theorems in number theory, including the celebrated Fermat's Last Theorem. Mason-Stothers Theorem is a function field analogue of the ABC conjecture that admits a much more elementary proof with many interesting consequences, including a polynomial version of Fermat's Last Theorem. While years of dedicated effort are expected for a full formalization of Fermat's Last Theorem, the simple proof of Mason-Stothers Theorem and its corollaries calls for an immediate formalization. We formalize an elementary proof of by Snyder in Lean 4, and also formalize many consequences of Mason-Stothers, including (i) non-solvability of Fermat-Cartan equations in polynomials, (ii) non-parametrizability of a certain elliptic curve, and (iii) Davenport's Theorem. We compare our work to existing formalizations of Mason-Stothers by Eberl in Isabelle and Wagemaker in Lean 3 respectively. Our formalization is based on the mathlib4 library of Lean 4, and is currently being ported back to mathlib4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信