{"title":"域$^{1}D_n$上$^{1}D_n$型邻接群的有理等价性","authors":"M. Archita","doi":"arxiv-2408.15528","DOIUrl":null,"url":null,"abstract":"Let $F$ be the function field of a smooth, geometrically integral curve over\na $p$-adic field with $p\\neq 2.$ Let $G$ be a classical adjoint group of type\n$^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\\it rational\nequivalence} on $G(F)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational equivalence on adjoint groups of type $^{1}D_n$ over field $\\\\mathbb{Q}_P(X)$\",\"authors\":\"M. Archita\",\"doi\":\"arxiv-2408.15528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be the function field of a smooth, geometrically integral curve over\\na $p$-adic field with $p\\\\neq 2.$ Let $G$ be a classical adjoint group of type\\n$^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\\\\it rational\\nequivalence} on $G(F)$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rational equivalence on adjoint groups of type $^{1}D_n$ over field $\mathbb{Q}_P(X)$
Let $F$ be the function field of a smooth, geometrically integral curve over
a $p$-adic field with $p\neq 2.$ Let $G$ be a classical adjoint group of type
$^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\it rational
equivalence} on $G(F)$.