域$^{1}D_n$上$^{1}D_n$型邻接群的有理等价性

M. Archita
{"title":"域$^{1}D_n$上$^{1}D_n$型邻接群的有理等价性","authors":"M. Archita","doi":"arxiv-2408.15528","DOIUrl":null,"url":null,"abstract":"Let $F$ be the function field of a smooth, geometrically integral curve over\na $p$-adic field with $p\\neq 2.$ Let $G$ be a classical adjoint group of type\n$^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\\it rational\nequivalence} on $G(F)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational equivalence on adjoint groups of type $^{1}D_n$ over field $\\\\mathbb{Q}_P(X)$\",\"authors\":\"M. Archita\",\"doi\":\"arxiv-2408.15528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be the function field of a smooth, geometrically integral curve over\\na $p$-adic field with $p\\\\neq 2.$ Let $G$ be a classical adjoint group of type\\n$^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\\\\it rational\\nequivalence} on $G(F)$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $F$ 是$p$-adic 域上的一条光滑几何积分曲线的函数域,其中$p\neq 2.$ 让 $G$ 是定义在 $F$ 上的$^1D_n$型经典邻接群。我们证明$G(F) / R$是微不足道的,其中$R$表示$G(F)$上的{\it rationalequivalence}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational equivalence on adjoint groups of type $^{1}D_n$ over field $\mathbb{Q}_P(X)$
Let $F$ be the function field of a smooth, geometrically integral curve over a $p$-adic field with $p\neq 2.$ Let $G$ be a classical adjoint group of type $^1D_n$ defined over $F$. We show that $G(F) / R$ is trivial, where $R$ denotes {\it rational equivalence} on $G(F)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信