{"title":"无模块和子模块包络","authors":"David Ssevviiri, Annet Kyomuhangi","doi":"arxiv-2408.16240","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative unital ring and $N$ be a submodule of an $R$-module\n$M$. The submodule $\\langle E_M(N)\\rangle$ generated by the envelope $E_M(N)$\nof $N$ is instrumental in studying rings and modules that satisfy the radical\nformula. We show that: 1) the semiprime radical is an invariant on all the\nsubmodules which are respectively generated by envelopes in the ascending chain\nof envelopes of a given submodule; 2) for rings that satisfy the radical\nformula, $\\langle E_M(0)\\rangle$ is an idempotent radical and it induces a\ntorsion theory whose torsion class consists of all nil $R$-modules and the\ntorsionfree class consists of all reduced $R$-modules; 3) Noetherian uniserial\nmodules satisfy the semiprime radical formula and their semiprime radical is a\nnil module; and lastly, 4) we construct a sheaf of nil $R$-modules on\n$\\text{Spec}(R)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nil modules and the envelope of a submodule\",\"authors\":\"David Ssevviiri, Annet Kyomuhangi\",\"doi\":\"arxiv-2408.16240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative unital ring and $N$ be a submodule of an $R$-module\\n$M$. The submodule $\\\\langle E_M(N)\\\\rangle$ generated by the envelope $E_M(N)$\\nof $N$ is instrumental in studying rings and modules that satisfy the radical\\nformula. We show that: 1) the semiprime radical is an invariant on all the\\nsubmodules which are respectively generated by envelopes in the ascending chain\\nof envelopes of a given submodule; 2) for rings that satisfy the radical\\nformula, $\\\\langle E_M(0)\\\\rangle$ is an idempotent radical and it induces a\\ntorsion theory whose torsion class consists of all nil $R$-modules and the\\ntorsionfree class consists of all reduced $R$-modules; 3) Noetherian uniserial\\nmodules satisfy the semiprime radical formula and their semiprime radical is a\\nnil module; and lastly, 4) we construct a sheaf of nil $R$-modules on\\n$\\\\text{Spec}(R)$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $R$ be a commutative unital ring and $N$ be a submodule of an $R$-module
$M$. The submodule $\langle E_M(N)\rangle$ generated by the envelope $E_M(N)$
of $N$ is instrumental in studying rings and modules that satisfy the radical
formula. We show that: 1) the semiprime radical is an invariant on all the
submodules which are respectively generated by envelopes in the ascending chain
of envelopes of a given submodule; 2) for rings that satisfy the radical
formula, $\langle E_M(0)\rangle$ is an idempotent radical and it induces a
torsion theory whose torsion class consists of all nil $R$-modules and the
torsionfree class consists of all reduced $R$-modules; 3) Noetherian uniserial
modules satisfy the semiprime radical formula and their semiprime radical is a
nil module; and lastly, 4) we construct a sheaf of nil $R$-modules on
$\text{Spec}(R)$.