带内卷的可表示正则环的直接有限性:一个反例

Christian Herrmann
{"title":"带内卷的可表示正则环的直接有限性:一个反例","authors":"Christian Herrmann","doi":"arxiv-2408.16437","DOIUrl":null,"url":null,"abstract":"Bruns and Roddy constructed a $3$-generated modular ortholattice $L$ which\ncannot be embedded into any complete modular ortholattice. Motivated by their\napproach, we use shift operators to construct a $*$-regular $*$-ring $R$ of\nendomorphisms of an inner product space (which can be chosen as the Hilbert\nspace $\\ell^2$) such that direct finiteness fails for $R$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct finiteness of representable regular rings with involution: A counterexample\",\"authors\":\"Christian Herrmann\",\"doi\":\"arxiv-2408.16437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bruns and Roddy constructed a $3$-generated modular ortholattice $L$ which\\ncannot be embedded into any complete modular ortholattice. Motivated by their\\napproach, we use shift operators to construct a $*$-regular $*$-ring $R$ of\\nendomorphisms of an inner product space (which can be chosen as the Hilbert\\nspace $\\\\ell^2$) such that direct finiteness fails for $R$.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布鲁恩斯和罗迪构建了一个$3$生成的模块正网格$L$,它不能嵌入到任何完整的模块正网格中。受他们方法的启发,我们使用移位算子来构造一个内积空间(可以选择为希尔贝空间 $\ell^2$)的内变换的 $*$-regular $*$-ring $R$,从而使直接有限性对 $R$ 失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct finiteness of representable regular rings with involution: A counterexample
Bruns and Roddy constructed a $3$-generated modular ortholattice $L$ which cannot be embedded into any complete modular ortholattice. Motivated by their approach, we use shift operators to construct a $*$-regular $*$-ring $R$ of endomorphisms of an inner product space (which can be chosen as the Hilbert space $\ell^2$) such that direct finiteness fails for $R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信