韩氏猜想的重补方法

Ren Wang, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou
{"title":"韩氏猜想的重补方法","authors":"Ren Wang, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou","doi":"arxiv-2409.00945","DOIUrl":null,"url":null,"abstract":"A conjecture due to Y. Han asks whether that Hochschild homology groups of a\nfinite dimensional algebra vanish for sufficiently large degrees would imply\nthat the algebra is of finite global dimension. We investigate this conjecture\nfrom the viewpoint of recollements of derived categories. It is shown that for\na recollement of unbounded derived categories of rings which extends downwards\n(or upwards) one step, Han's conjecture holds for the ring in the middle if and\nonly if it holds for the two rings on the two sides and hence Han's conjecture is reduced to derived $2$-simple rings. Furthermore, this\nreduction result is applied to Han's conjecture for Morita contexts rings and\nexact contexts. Finally it is proved that Han's conjecture holds for\nskew-gentle algebras, category algebras of finite EI categories and\nGeiss-Leclerc-Schr\\\"{o}er algebras associated to Cartan triples.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A recollement approach to Han's conjecture\",\"authors\":\"Ren Wang, Xiaoxiao Xu, Jinbi Zhang, Guodong Zhou\",\"doi\":\"arxiv-2409.00945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A conjecture due to Y. Han asks whether that Hochschild homology groups of a\\nfinite dimensional algebra vanish for sufficiently large degrees would imply\\nthat the algebra is of finite global dimension. We investigate this conjecture\\nfrom the viewpoint of recollements of derived categories. It is shown that for\\na recollement of unbounded derived categories of rings which extends downwards\\n(or upwards) one step, Han's conjecture holds for the ring in the middle if and\\nonly if it holds for the two rings on the two sides and hence Han's conjecture is reduced to derived $2$-simple rings. Furthermore, this\\nreduction result is applied to Han's conjecture for Morita contexts rings and\\nexact contexts. Finally it is proved that Han's conjecture holds for\\nskew-gentle algebras, category algebras of finite EI categories and\\nGeiss-Leclerc-Schr\\\\\\\"{o}er algebras associated to Cartan triples.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Y. Han 提出的一个猜想是,无限维代数的霍希契尔德同调群在足够大的度数下消失是否意味着该代数是有限全维的。我们从派生类的重组的角度研究了这一猜想。结果表明,对于向下(或向上)延伸一步的无界派生类环的重组,如果且只有当韩氏猜想对两边的两个环成立时,韩氏猜想才对中间的环成立,因此韩氏猜想被还原为派生的 2 美元简单环。此外,这一还原结果也适用于莫里塔上下文环和精确上下文的韩氏猜想。最后,证明了韩氏猜想对于与卡坦三元组相关联的斜温和代数、有限EI范畴的范畴代数和Geiss-Leclerc-Schr"{o}er代数是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A recollement approach to Han's conjecture
A conjecture due to Y. Han asks whether that Hochschild homology groups of a finite dimensional algebra vanish for sufficiently large degrees would imply that the algebra is of finite global dimension. We investigate this conjecture from the viewpoint of recollements of derived categories. It is shown that for a recollement of unbounded derived categories of rings which extends downwards (or upwards) one step, Han's conjecture holds for the ring in the middle if and only if it holds for the two rings on the two sides and hence Han's conjecture is reduced to derived $2$-simple rings. Furthermore, this reduction result is applied to Han's conjecture for Morita contexts rings and exact contexts. Finally it is proved that Han's conjecture holds for skew-gentle algebras, category algebras of finite EI categories and Geiss-Leclerc-Schr\"{o}er algebras associated to Cartan triples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信