共用卡什模块

Rafail Alizade, Engin Büyükaşık
{"title":"共用卡什模块","authors":"Rafail Alizade, Engin Büyükaşık","doi":"arxiv-2409.04059","DOIUrl":null,"url":null,"abstract":"In this paper we study the modules $M$ every simple subfactors of which is a\nhomomorphic image of $M$ and call them co-Kasch modules. These modules are dual\nto Kasch modules $M$ every simple subfactors of which can be embedded in $M$.\nWe show that a module is co-Kasch if and only if every simple module in\n$\\sigma[M]$ is a homomorphic image of $M$. In particular, a projective right\nmodule $P$ is co-Kasch if and only if $P$ is a generator for $\\sigma[P]$. If\n$R$ is right max and right $H$-ring, then every right $R$-module is co-Kasch;\nand the converse is true for the rings whose simple right modules have locally\nartinian injective hulls. For a right artinian ring $R$, we prove that: (1)\nevery finitely generated right $R$-module is co-Kasch if and only if every\nright $R$-module is a co-Kasch module if and only if $R$ is a right $H$-ring;\nand (2) every finitely generated projective right $R$-module is co-Kasch if and\nonly if the Cartan matrix of $R$ is a diagonal matrix. For a Pr\\\"ufer domain\n$R$, we prove that, every nonzero ideal of $R$ is co-Kasch if and only if $R$\nis Dedekind. The structure of $\\mathbb{Z}$-modules that are co-Kasch is\ncompletely characterized.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Kasch Modules\",\"authors\":\"Rafail Alizade, Engin Büyükaşık\",\"doi\":\"arxiv-2409.04059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the modules $M$ every simple subfactors of which is a\\nhomomorphic image of $M$ and call them co-Kasch modules. These modules are dual\\nto Kasch modules $M$ every simple subfactors of which can be embedded in $M$.\\nWe show that a module is co-Kasch if and only if every simple module in\\n$\\\\sigma[M]$ is a homomorphic image of $M$. In particular, a projective right\\nmodule $P$ is co-Kasch if and only if $P$ is a generator for $\\\\sigma[P]$. If\\n$R$ is right max and right $H$-ring, then every right $R$-module is co-Kasch;\\nand the converse is true for the rings whose simple right modules have locally\\nartinian injective hulls. For a right artinian ring $R$, we prove that: (1)\\nevery finitely generated right $R$-module is co-Kasch if and only if every\\nright $R$-module is a co-Kasch module if and only if $R$ is a right $H$-ring;\\nand (2) every finitely generated projective right $R$-module is co-Kasch if and\\nonly if the Cartan matrix of $R$ is a diagonal matrix. For a Pr\\\\\\\"ufer domain\\n$R$, we prove that, every nonzero ideal of $R$ is co-Kasch if and only if $R$\\nis Dedekind. The structure of $\\\\mathbb{Z}$-modules that are co-Kasch is\\ncompletely characterized.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了每一个简单子因子都是 $M$ 的同构像的模块 $M$,并称它们为共卡什模块。我们证明,当且仅当$\sigma[M]$ 中的每个简单模块都是$M$ 的同构像时,模块才是共卡什模块。尤其是,当且仅当 $P$ 是 $\sigma[P]$ 的生成器时,一个投影右模块 $P$ 是共卡什模块。如果$R$是右最大和右$H$环,那么每个右$R$模块都是共卡斯;反之亦然,对于其简单右模块具有局部自洽注入环的环来说也是如此。对于右artinian 环 $R$,我们证明(1)当且仅当 $R$ 是一个右 $H$ 环时,每一个有限生成的右 $R$ 模块都是共卡斯模块;(2)当且仅当 $R$ 的 Cartan 矩阵是一个对角矩阵时,每一个有限生成的投影右 $R$ 模块都是共卡斯模块。对于一个 Pr\"ufer 域$R$,我们证明,当且仅当 $R$ 是 Dedekind 时,$R$ 的每一个非零理想都是 co-Kasch。共卡斯的 $\mathbb{Z}$ 模块的结构被完整地描述了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Kasch Modules
In this paper we study the modules $M$ every simple subfactors of which is a homomorphic image of $M$ and call them co-Kasch modules. These modules are dual to Kasch modules $M$ every simple subfactors of which can be embedded in $M$. We show that a module is co-Kasch if and only if every simple module in $\sigma[M]$ is a homomorphic image of $M$. In particular, a projective right module $P$ is co-Kasch if and only if $P$ is a generator for $\sigma[P]$. If $R$ is right max and right $H$-ring, then every right $R$-module is co-Kasch; and the converse is true for the rings whose simple right modules have locally artinian injective hulls. For a right artinian ring $R$, we prove that: (1) every finitely generated right $R$-module is co-Kasch if and only if every right $R$-module is a co-Kasch module if and only if $R$ is a right $H$-ring; and (2) every finitely generated projective right $R$-module is co-Kasch if and only if the Cartan matrix of $R$ is a diagonal matrix. For a Pr\"ufer domain $R$, we prove that, every nonzero ideal of $R$ is co-Kasch if and only if $R$ is Dedekind. The structure of $\mathbb{Z}$-modules that are co-Kasch is completely characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信