单体、动力学和勒维路径代数

Gene Abrams, Roozbeh Hazrat
{"title":"单体、动力学和勒维路径代数","authors":"Gene Abrams, Roozbeh Hazrat","doi":"arxiv-2409.00289","DOIUrl":null,"url":null,"abstract":"Leavitt path algebras, which are algebras associated to directed graphs, were\nfirst introduced about 20 years ago. They have strong connections to such\ntopics as symbolic dynamics, operator algebras, non-commutative geometry,\nrepresentation theory, and even chip firing. In this article we invite the\nreader to sneak a peek at these fascinating algebras and their interplay with\nseveral seemingly disparate parts of mathematics.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monoids, dynamics and Leavitt path algebras\",\"authors\":\"Gene Abrams, Roozbeh Hazrat\",\"doi\":\"arxiv-2409.00289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leavitt path algebras, which are algebras associated to directed graphs, were\\nfirst introduced about 20 years ago. They have strong connections to such\\ntopics as symbolic dynamics, operator algebras, non-commutative geometry,\\nrepresentation theory, and even chip firing. In this article we invite the\\nreader to sneak a peek at these fascinating algebras and their interplay with\\nseveral seemingly disparate parts of mathematics.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利维特路径代数是与有向图相关联的代数,大约在 20 年前首次被提出。它们与符号动力学、算子代数、非交换几何、表示理论,甚至芯片烧制等课题都有密切联系。在这篇文章中,我们将邀请读者窥探这些迷人的代数,以及它们与数学中多个看似互不相关的部分之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monoids, dynamics and Leavitt path algebras
Leavitt path algebras, which are algebras associated to directed graphs, were first introduced about 20 years ago. They have strong connections to such topics as symbolic dynamics, operator algebras, non-commutative geometry, representation theory, and even chip firing. In this article we invite the reader to sneak a peek at these fascinating algebras and their interplay with several seemingly disparate parts of mathematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信