近关联代数和 $LR$ 代数的代数理论:等价、表征和 $LR$ 扬-巴克斯特方程

Elisabete Barreiro, Saïd Benayadi, Carla Rizzo
{"title":"近关联代数和 $LR$ 代数的代数理论:等价、表征和 $LR$ 扬-巴克斯特方程","authors":"Elisabete Barreiro, Saïd Benayadi, Carla Rizzo","doi":"arxiv-2409.00390","DOIUrl":null,"url":null,"abstract":"We develop the bialgebra theory for two classes of non-associative algebras:\nnearly associative algebras and $LR$-algebras. In particular, building on\nrecent studies that reveal connections between these algebraic structures, we\nestablish that nearly associative bialgebras and $LR$-bialgebras are, in fact,\nequivalent concepts. We also provide a characterization of these bialgebra\nclasses based on the coproduct. Moreover, since the development of nearly\nassociative bialgebras - and by extension, $LR$-bialgebras - requires the\nframework of nearly associative $L$-algebras, we introduce this class of\nnon-associative algebras and explore their fundamental properties. Furthermore,\nwe identify and characterize a special class of nearly associative bialgebras,\nthe coboundary nearly associative bialgebras, which provides a natural\nframework for studying the Yang-Baxter equation (YBE) within this context.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bialgebra theory for nearly associative algebras and $LR$-algebras: equivalence, characterization, and $LR$-Yang-Baxter Equation\",\"authors\":\"Elisabete Barreiro, Saïd Benayadi, Carla Rizzo\",\"doi\":\"arxiv-2409.00390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the bialgebra theory for two classes of non-associative algebras:\\nnearly associative algebras and $LR$-algebras. In particular, building on\\nrecent studies that reveal connections between these algebraic structures, we\\nestablish that nearly associative bialgebras and $LR$-bialgebras are, in fact,\\nequivalent concepts. We also provide a characterization of these bialgebra\\nclasses based on the coproduct. Moreover, since the development of nearly\\nassociative bialgebras - and by extension, $LR$-bialgebras - requires the\\nframework of nearly associative $L$-algebras, we introduce this class of\\nnon-associative algebras and explore their fundamental properties. Furthermore,\\nwe identify and characterize a special class of nearly associative bialgebras,\\nthe coboundary nearly associative bialgebras, which provides a natural\\nframework for studying the Yang-Baxter equation (YBE) within this context.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了两类非联立代数:近联立代数和 $LR$-代数的双代数理论。特别是,在揭示这些代数结构之间联系的最新研究的基础上,我们确立了近关联双代数和 $LR$ 双代数实际上是等价的概念。我们还提供了基于协积的双代数类的特征。此外,由于近关联双桥--以及推而广之的 $LR$ 双桥--的发展需要近关联 $L$-gebras 的框架,我们介绍了这一类非关联代数并探讨了它们的基本性质。此外,我们还发现并描述了近关联双桥的一个特殊类别--共界近关联双桥,这为在此背景下研究杨-巴克斯特方程(YBE)提供了一个自然框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bialgebra theory for nearly associative algebras and $LR$-algebras: equivalence, characterization, and $LR$-Yang-Baxter Equation
We develop the bialgebra theory for two classes of non-associative algebras: nearly associative algebras and $LR$-algebras. In particular, building on recent studies that reveal connections between these algebraic structures, we establish that nearly associative bialgebras and $LR$-bialgebras are, in fact, equivalent concepts. We also provide a characterization of these bialgebra classes based on the coproduct. Moreover, since the development of nearly associative bialgebras - and by extension, $LR$-bialgebras - requires the framework of nearly associative $L$-algebras, we introduce this class of non-associative algebras and explore their fundamental properties. Furthermore, we identify and characterize a special class of nearly associative bialgebras, the coboundary nearly associative bialgebras, which provides a natural framework for studying the Yang-Baxter equation (YBE) within this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信