准扭曲关联代数、变形映射及其支配代数

Apurba Das, Ramkrishna Mandal
{"title":"准扭曲关联代数、变形映射及其支配代数","authors":"Apurba Das, Ramkrishna Mandal","doi":"arxiv-2409.00443","DOIUrl":null,"url":null,"abstract":"A quasi-twilled associative algebra is an associative algebra $\\mathbb{A}$\nwhose underlying vector space has a decomposition $\\mathbb{A} = A \\oplus B$\nsuch that $B \\subset \\mathbb{A}$ is a subalgebra. In the first part of this\npaper, we give the Maurer-Cartan characterization and introduce the cohomology\nof a quasi-twilled associative algebra. In a quasi-twilled associative algebra $\\mathbb{A}$, a linear map $D: A\n\\rightarrow B$ is called a strong deformation map if $\\mathrm{Gr}(D) \\subset\n\\mathbb{A}$ is a subalgebra. Such a map generalizes associative algebra\nhomomorphisms, derivations, crossed homomorphisms and the associative analogue\nof modified {\\sf r}-matrices. We introduce the cohomology of a strong\ndeformation map $D$ unifying the cohomologies of all the operators mentioned\nabove. We also define the governing algebra for the pair $(\\mathbb{A}, D)$ to\nstudy simultaneous deformations of both $\\mathbb{A}$ and $D$. On the other hand, a linear map $r: B \\rightarrow A$ is called a weak\ndeformation map if $\\mathrm{Gr} (r) \\subset \\mathbb{A}$ is a subalgebra. Such a\nmap generalizes relative Rota-Baxter operators of any weight, twisted\nRota-Baxter operators, Reynolds operators, left-averaging operators and\nright-averaging operators. Here we define the cohomology and governing algebra\nof a weak deformation map $r$ (that unify the cohomologies of all the operators\nmentioned above) and also for the pair $(\\mathbb{A}, r)$ that govern\nsimultaneous deformations.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-twilled associative algebras, deformation maps and their governing algebras\",\"authors\":\"Apurba Das, Ramkrishna Mandal\",\"doi\":\"arxiv-2409.00443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-twilled associative algebra is an associative algebra $\\\\mathbb{A}$\\nwhose underlying vector space has a decomposition $\\\\mathbb{A} = A \\\\oplus B$\\nsuch that $B \\\\subset \\\\mathbb{A}$ is a subalgebra. In the first part of this\\npaper, we give the Maurer-Cartan characterization and introduce the cohomology\\nof a quasi-twilled associative algebra. In a quasi-twilled associative algebra $\\\\mathbb{A}$, a linear map $D: A\\n\\\\rightarrow B$ is called a strong deformation map if $\\\\mathrm{Gr}(D) \\\\subset\\n\\\\mathbb{A}$ is a subalgebra. Such a map generalizes associative algebra\\nhomomorphisms, derivations, crossed homomorphisms and the associative analogue\\nof modified {\\\\sf r}-matrices. We introduce the cohomology of a strong\\ndeformation map $D$ unifying the cohomologies of all the operators mentioned\\nabove. We also define the governing algebra for the pair $(\\\\mathbb{A}, D)$ to\\nstudy simultaneous deformations of both $\\\\mathbb{A}$ and $D$. On the other hand, a linear map $r: B \\\\rightarrow A$ is called a weak\\ndeformation map if $\\\\mathrm{Gr} (r) \\\\subset \\\\mathbb{A}$ is a subalgebra. Such a\\nmap generalizes relative Rota-Baxter operators of any weight, twisted\\nRota-Baxter operators, Reynolds operators, left-averaging operators and\\nright-averaging operators. Here we define the cohomology and governing algebra\\nof a weak deformation map $r$ (that unify the cohomologies of all the operators\\nmentioned above) and also for the pair $(\\\\mathbb{A}, r)$ that govern\\nsimultaneous deformations.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准凋摆关联代数是一个关联代数 $/mathbb{A}$,它的底层向量空间有一个分解 $/mathbb{A} = A \oplus B$,使得 $B \subset \mathbb{A}$ 是一个子代数。在本文的第一部分,我们给出了毛勒-卡尔坦特征,并介绍了准凋零关联代数的同调。在一个准凋零关联代数 $\mathbb{A}$ 中,如果 $\mathrm{Gr}(D)\subset\mathbb{A}$ 是一个子代数,那么线性映射 $D: A\rightarrow B$ 就被称为强变形映射。这样的映射概括了关联代数同态、派生、交叉同态以及修正{\sf r}-矩阵的关联类似。我们引入了强变形映射 $D$ 的同调,它统一了上述所有算子的同调。我们还定义了一对$(\mathbb{A}, D)$的支配代数,以研究$\mathbb{A}$和$D$的同时变形。另一方面,线性映射 $r:如果 $\mathrm{Gr} (r) \subset \mathbb{A}$ 是一个子代数,那么 B \rightarrow A$ 就叫做弱变形映射。这样的映射泛化了任意权重的相对罗塔-巴克斯特算子、扭曲罗塔-巴克斯特算子、雷诺算子、左平均算子和右平均算子。在这里,我们定义了弱变形映射 $r$ 的同调与支配代数(统一了上述所有算子的同调),以及支配同时变形的一对 $(\mathbb{A}, r)$ 的同调与支配代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-twilled associative algebras, deformation maps and their governing algebras
A quasi-twilled associative algebra is an associative algebra $\mathbb{A}$ whose underlying vector space has a decomposition $\mathbb{A} = A \oplus B$ such that $B \subset \mathbb{A}$ is a subalgebra. In the first part of this paper, we give the Maurer-Cartan characterization and introduce the cohomology of a quasi-twilled associative algebra. In a quasi-twilled associative algebra $\mathbb{A}$, a linear map $D: A \rightarrow B$ is called a strong deformation map if $\mathrm{Gr}(D) \subset \mathbb{A}$ is a subalgebra. Such a map generalizes associative algebra homomorphisms, derivations, crossed homomorphisms and the associative analogue of modified {\sf r}-matrices. We introduce the cohomology of a strong deformation map $D$ unifying the cohomologies of all the operators mentioned above. We also define the governing algebra for the pair $(\mathbb{A}, D)$ to study simultaneous deformations of both $\mathbb{A}$ and $D$. On the other hand, a linear map $r: B \rightarrow A$ is called a weak deformation map if $\mathrm{Gr} (r) \subset \mathbb{A}$ is a subalgebra. Such a map generalizes relative Rota-Baxter operators of any weight, twisted Rota-Baxter operators, Reynolds operators, left-averaging operators and right-averaging operators. Here we define the cohomology and governing algebra of a weak deformation map $r$ (that unify the cohomologies of all the operators mentioned above) and also for the pair $(\mathbb{A}, r)$ that govern simultaneous deformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信