杯积、弗罗里舍-尼延胡斯括号以及与 Hom-Lie 对象相关的派生括号

Anusuiya Baishya, Apurba Das
{"title":"杯积、弗罗里舍-尼延胡斯括号以及与 Hom-Lie 对象相关的派生括号","authors":"Anusuiya Baishya, Apurba Das","doi":"arxiv-2409.01865","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce some new graded Lie algebras associated with a\nHom-Lie algebra. At first, we define the cup product bracket and its\napplication to the deformation theory of Hom-Lie algebra morphisms. We observe\nan action of the well-known Hom-analogue of the Nijenhuis-Richardson graded Lie\nalgebra on the cup product graded Lie algebra. Using the corresponding\nsemidirect product, we define the Fr\\\"{o}licher-Nijenhuis bracket and study its\napplication to Nijenhuis operators. We show that the Nijenhuis-Richardson\ngraded Lie algebra and the Fr\\\"{o}licher-Nijenhuis algebra constitute a matched\npair of graded Lie algebras. Finally, we define another graded Lie bracket,\ncalled the derived bracket that is useful to study Rota-Baxter operators on\nHom-Lie algebras.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cup product, Frölicher-Nijenhuis bracket and the derived bracket associated to Hom-Lie algebras\",\"authors\":\"Anusuiya Baishya, Apurba Das\",\"doi\":\"arxiv-2409.01865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce some new graded Lie algebras associated with a\\nHom-Lie algebra. At first, we define the cup product bracket and its\\napplication to the deformation theory of Hom-Lie algebra morphisms. We observe\\nan action of the well-known Hom-analogue of the Nijenhuis-Richardson graded Lie\\nalgebra on the cup product graded Lie algebra. Using the corresponding\\nsemidirect product, we define the Fr\\\\\\\"{o}licher-Nijenhuis bracket and study its\\napplication to Nijenhuis operators. We show that the Nijenhuis-Richardson\\ngraded Lie algebra and the Fr\\\\\\\"{o}licher-Nijenhuis algebra constitute a matched\\npair of graded Lie algebras. Finally, we define another graded Lie bracket,\\ncalled the derived bracket that is useful to study Rota-Baxter operators on\\nHom-Lie algebras.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一些与Hom-Lie代数相关的新梯度李代数。首先,我们定义了杯积括号及其在 Hom-Lie 代数变形理论中的应用。我们观察到著名的尼延胡斯-理查森分级李代数的 Hom-analogue 对杯积分级李代数的作用。利用相应的间接积,我们定义了 Fr\"{o}licher-Nijenhuis 括号,并研究了它在尼延胡斯算子中的应用。我们证明,尼亨休斯-理查德森分级李代数和弗里歇尔-尼亨休斯代数构成了分级李代数的匹配对。最后,我们定义了另一个梯度李代数括号,称为派生括号,它有助于研究Rota-Baxter算子在Hom-Lie代数上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cup product, Frölicher-Nijenhuis bracket and the derived bracket associated to Hom-Lie algebras
In this paper, we introduce some new graded Lie algebras associated with a Hom-Lie algebra. At first, we define the cup product bracket and its application to the deformation theory of Hom-Lie algebra morphisms. We observe an action of the well-known Hom-analogue of the Nijenhuis-Richardson graded Lie algebra on the cup product graded Lie algebra. Using the corresponding semidirect product, we define the Fr\"{o}licher-Nijenhuis bracket and study its application to Nijenhuis operators. We show that the Nijenhuis-Richardson graded Lie algebra and the Fr\"{o}licher-Nijenhuis algebra constitute a matched pair of graded Lie algebras. Finally, we define another graded Lie bracket, called the derived bracket that is useful to study Rota-Baxter operators on Hom-Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信