基于无穷级的簇代数

Fan Qin
{"title":"基于无穷级的簇代数","authors":"Fan Qin","doi":"arxiv-2409.02881","DOIUrl":null,"url":null,"abstract":"We extend based cluster algebras to infinite ranks. By extending (quantum)\ncluster algebras associated with double Bott-Samelson cells, we recover\ninfinite rank cluster algebras arising from representations of (shifted)\nquantum affine algebras. As the main application, we show that the fundamental\nvariables of the cluster algebras associated with double Bott-Samelson cells\ncould be computed via a braid group action when the Cartan matrix is of finite\ntype. We also obtain the result A=U for the associated infinite rank (quantum)\ncluster algebras. Additionally, several conjectures regarding quantum virtual\nGrothendieck rings by Jang-Lee-Oh and Oh-Park follow as consequences. Finally,\nwe quantize cluster algebras arising from representations of shifted quantum\naffine algebras.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based cluster algebras of infinite ranks\",\"authors\":\"Fan Qin\",\"doi\":\"arxiv-2409.02881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend based cluster algebras to infinite ranks. By extending (quantum)\\ncluster algebras associated with double Bott-Samelson cells, we recover\\ninfinite rank cluster algebras arising from representations of (shifted)\\nquantum affine algebras. As the main application, we show that the fundamental\\nvariables of the cluster algebras associated with double Bott-Samelson cells\\ncould be computed via a braid group action when the Cartan matrix is of finite\\ntype. We also obtain the result A=U for the associated infinite rank (quantum)\\ncluster algebras. Additionally, several conjectures regarding quantum virtual\\nGrothendieck rings by Jang-Lee-Oh and Oh-Park follow as consequences. Finally,\\nwe quantize cluster algebras arising from representations of shifted quantum\\naffine algebras.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将基于簇的代数扩展到无穷级。通过扩展与双博特-萨缪尔森单元相关的(量子)簇代数,我们恢复了产生于(移位)量子仿射代数表示的无穷级簇代数。作为主要应用,我们证明了当 Cartan 矩阵是有限类型时,与双 Bott-Samelson 单元相关的簇代数的基本变量可以通过辫子群作用计算出来。我们还得到了相关无穷级(量子)簇代数的结果 A=U。此外,Jang-Lee-Oh 和 Oh-Park 关于量子虚拟格罗顿第克环的几个猜想也随之而来。最后,我们量子化了由移位量子虚代数的表示所产生的簇代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based cluster algebras of infinite ranks
We extend based cluster algebras to infinite ranks. By extending (quantum) cluster algebras associated with double Bott-Samelson cells, we recover infinite rank cluster algebras arising from representations of (shifted) quantum affine algebras. As the main application, we show that the fundamental variables of the cluster algebras associated with double Bott-Samelson cells could be computed via a braid group action when the Cartan matrix is of finite type. We also obtain the result A=U for the associated infinite rank (quantum) cluster algebras. Additionally, several conjectures regarding quantum virtual Grothendieck rings by Jang-Lee-Oh and Oh-Park follow as consequences. Finally, we quantize cluster algebras arising from representations of shifted quantum affine algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信