通过树枝化推导分散 PDE 的正常形式

Yvain Bruned
{"title":"通过树枝化推导分散 PDE 的正常形式","authors":"Yvain Bruned","doi":"arxiv-2409.03642","DOIUrl":null,"url":null,"abstract":"In this work, we propose a systematic derivation of normal forms for\ndispersive equations using decorated trees introduced in arXiv:2005.01649. The\nkey tool is the arborification map which is a morphism from the\nButcher-Connes-Kreimer Hopf algebra to the Shuffle Hopf algebra. It originates\nfrom Ecalle's approach to dynamical systems with singularities. This natural\nmap has been used in many applications ranging from algebra, numerical analysis\nand rough paths. This connection shows that Hopf algebras also appear naturally\nin the context of dispersive equations and provide insights into some crucial\ndecomposition.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of normal forms for dispersive PDEs via arborification\",\"authors\":\"Yvain Bruned\",\"doi\":\"arxiv-2409.03642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a systematic derivation of normal forms for\\ndispersive equations using decorated trees introduced in arXiv:2005.01649. The\\nkey tool is the arborification map which is a morphism from the\\nButcher-Connes-Kreimer Hopf algebra to the Shuffle Hopf algebra. It originates\\nfrom Ecalle's approach to dynamical systems with singularities. This natural\\nmap has been used in many applications ranging from algebra, numerical analysis\\nand rough paths. This connection shows that Hopf algebras also appear naturally\\nin the context of dispersive equations and provide insights into some crucial\\ndecomposition.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种利用 arXiv:2005.01649 中引入的装饰树系统推导分散方程正常形式的方法。关键工具是树化映射,它是从布彻-康涅斯-克里默霍普夫代数到舒弗-霍普夫代数的变形。它源于埃卡勒研究具有奇点的动力系统的方法。这一自然映射被广泛应用于代数、数值分析和粗糙路径等领域。这种联系表明,霍普夫代数也自然地出现在分散方程中,并为一些关键的分解提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivation of normal forms for dispersive PDEs via arborification
In this work, we propose a systematic derivation of normal forms for dispersive equations using decorated trees introduced in arXiv:2005.01649. The key tool is the arborification map which is a morphism from the Butcher-Connes-Kreimer Hopf algebra to the Shuffle Hopf algebra. It originates from Ecalle's approach to dynamical systems with singularities. This natural map has been used in many applications ranging from algebra, numerical analysis and rough paths. This connection shows that Hopf algebras also appear naturally in the context of dispersive equations and provide insights into some crucial decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信