单元素对齐移位等价性和勒维特路径代数的分级分类猜想

Kevin Aguyar Brix, Adam Dor-On, Roozbeh Hazrat, Efren Ruiz
{"title":"单元素对齐移位等价性和勒维特路径代数的分级分类猜想","authors":"Kevin Aguyar Brix, Adam Dor-On, Roozbeh Hazrat, Efren Ruiz","doi":"arxiv-2409.03950","DOIUrl":null,"url":null,"abstract":"We prove that a unital shift equivalence induces a graded isomorphism of\nLeavitt path algebras when the shift equivalence satisfies an alignment\ncondition. This yields another step towards confirming the Graded\nClassification Conjecture. Our proof uses the bridging bimodule developed by\nAbrams, the fourth-named author and Tomforde, as well as a general lifting\nresult for graded rings that we establish here. This general result also allows\nus to provide simplified proofs of two important recent results: one\nindependently proven by Arnone and Va{\\v s} through other means that the graded\n$K$-theory functor is full, and the other proven by Arnone and Corti\\~nas that\nthere is no unital graded homomorphism between a Leavitt algebra and the path\nalgebra of a Cuntz splice.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unital aligned shift equivalence and the graded classification conjecture for Leavitt path algebra\",\"authors\":\"Kevin Aguyar Brix, Adam Dor-On, Roozbeh Hazrat, Efren Ruiz\",\"doi\":\"arxiv-2409.03950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a unital shift equivalence induces a graded isomorphism of\\nLeavitt path algebras when the shift equivalence satisfies an alignment\\ncondition. This yields another step towards confirming the Graded\\nClassification Conjecture. Our proof uses the bridging bimodule developed by\\nAbrams, the fourth-named author and Tomforde, as well as a general lifting\\nresult for graded rings that we establish here. This general result also allows\\nus to provide simplified proofs of two important recent results: one\\nindependently proven by Arnone and Va{\\\\v s} through other means that the graded\\n$K$-theory functor is full, and the other proven by Arnone and Corti\\\\~nas that\\nthere is no unital graded homomorphism between a Leavitt algebra and the path\\nalgebra of a Cuntz splice.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,当单子移项等价满足对齐条件时,移项等价会诱导拉维特路径代数的分级同构。这为证实等级分类猜想又迈出了一步。我们的证明使用了阿布拉姆斯、第四作者和汤姆福德开发的桥接双模,以及我们在此建立的分级环的一般提升结果。这个一般结果还使我们能够为最近的两个重要结果提供简化证明:一个是阿诺内和Va{/v s}通过其他方法独立证明的分级$K$理论函子是满的;另一个是阿诺内和Corti/~nas证明的,即在Leavitt代数和Cuntz拼接的路径代数之间不存在单素数分级同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unital aligned shift equivalence and the graded classification conjecture for Leavitt path algebra
We prove that a unital shift equivalence induces a graded isomorphism of Leavitt path algebras when the shift equivalence satisfies an alignment condition. This yields another step towards confirming the Graded Classification Conjecture. Our proof uses the bridging bimodule developed by Abrams, the fourth-named author and Tomforde, as well as a general lifting result for graded rings that we establish here. This general result also allows us to provide simplified proofs of two important recent results: one independently proven by Arnone and Va{\v s} through other means that the graded $K$-theory functor is full, and the other proven by Arnone and Corti\~nas that there is no unital graded homomorphism between a Leavitt algebra and the path algebra of a Cuntz splice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信