惰性素数下 GU(2,1) 的岩泽理论

Muhammad Manji
{"title":"惰性素数下 GU(2,1) 的岩泽理论","authors":"Muhammad Manji","doi":"arxiv-2409.05664","DOIUrl":null,"url":null,"abstract":"Many problems of arithmetic nature rely on the computation or analysis of\nvalues of $L$-functions attached to objects from geometry. Whilst basic\nanalytic properties of the $L$-functions can be difficult to understand, recent\nresearch programs have shown that automorphic $L$-values are susceptible to\nstudy via algebraic methods linking them to Selmer groups. Iwasawa theory,\npioneered first by Iwasawa in the 1960s and later Mazur and Wiles provides an\nalgebraic recipe to obtain a $p$-adic analogue of the $L$-function. In this\nwork we aim to adapt Iwasawa theory to a new context of representations of the\nunitary group GU(2,1) at primes inert in the respective imaginary quadratic\nfield. This requires a novel approach using the Schneider--Venjakob regulator\nmap, working over locally analytic distribution algebras. Subsequently, we show\nvanishing of some Bloch--Kato Selmer groups when a certain $p$-adic\ndistribution is non-vanishing. These results verify cases of the Bloch--Kato\nconjecture for GU(2,1) at inert primes in rank 0.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iwasawa Theory for GU(2,1) at inert primes\",\"authors\":\"Muhammad Manji\",\"doi\":\"arxiv-2409.05664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many problems of arithmetic nature rely on the computation or analysis of\\nvalues of $L$-functions attached to objects from geometry. Whilst basic\\nanalytic properties of the $L$-functions can be difficult to understand, recent\\nresearch programs have shown that automorphic $L$-values are susceptible to\\nstudy via algebraic methods linking them to Selmer groups. Iwasawa theory,\\npioneered first by Iwasawa in the 1960s and later Mazur and Wiles provides an\\nalgebraic recipe to obtain a $p$-adic analogue of the $L$-function. In this\\nwork we aim to adapt Iwasawa theory to a new context of representations of the\\nunitary group GU(2,1) at primes inert in the respective imaginary quadratic\\nfield. This requires a novel approach using the Schneider--Venjakob regulator\\nmap, working over locally analytic distribution algebras. Subsequently, we show\\nvanishing of some Bloch--Kato Selmer groups when a certain $p$-adic\\ndistribution is non-vanishing. These results verify cases of the Bloch--Kato\\nconjecture for GU(2,1) at inert primes in rank 0.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多算术性质的问题都依赖于计算或分析附加在几何对象上的 $L$ 函数值。虽然$L$函数的基本解析性质可能难以理解,但最近的研究计划表明,可以通过将它们与塞尔默群联系起来的代数方法来研究自变$L$值。岩泽理论(Iwasawa theory)由岩泽(Iwasawa)在 20 世纪 60 年代首创,后来由马祖尔(Mazur)和怀尔斯(Wiles)提出,它提供了获得 $L$ 函数的 $p$-adic 类似值的代数方法。在这项工作中,我们的目标是将岩泽理论调整到单元群 GU(2,1) 在各自虚二次场中惰性素数的表示的新环境中。这需要一种使用施耐德--文雅科布调节图的新方法,在局部解析分布代数上工作。随后,我们展示了某些布洛赫--加藤塞尔默群在特定 $p$-adicdistribution 非消失时的消失。这些结果验证了秩为 0 的惰性素数上 GU(2,1) 的布洛赫--卡托猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iwasawa Theory for GU(2,1) at inert primes
Many problems of arithmetic nature rely on the computation or analysis of values of $L$-functions attached to objects from geometry. Whilst basic analytic properties of the $L$-functions can be difficult to understand, recent research programs have shown that automorphic $L$-values are susceptible to study via algebraic methods linking them to Selmer groups. Iwasawa theory, pioneered first by Iwasawa in the 1960s and later Mazur and Wiles provides an algebraic recipe to obtain a $p$-adic analogue of the $L$-function. In this work we aim to adapt Iwasawa theory to a new context of representations of the unitary group GU(2,1) at primes inert in the respective imaginary quadratic field. This requires a novel approach using the Schneider--Venjakob regulator map, working over locally analytic distribution algebras. Subsequently, we show vanishing of some Bloch--Kato Selmer groups when a certain $p$-adic distribution is non-vanishing. These results verify cases of the Bloch--Kato conjecture for GU(2,1) at inert primes in rank 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信