3-Lie 代数形态的稳定性和刚性

Jun Jiang, Yunhe Sheng, Geyi Sun
{"title":"3-Lie 代数形态的稳定性和刚性","authors":"Jun Jiang, Yunhe Sheng, Geyi Sun","doi":"arxiv-2409.05041","DOIUrl":null,"url":null,"abstract":"In this paper, first we use the higher derived brackets to construct an\n$L_\\infty$-algebra, whose Maurer-Cartan elements are $3$-Lie algebra morphisms.\nUsing the differential in the $L_\\infty$-algebra that govern deformations of\nthe morphism, we give the cohomology of a $3$-Lie algebra morphism. Then we\nstudy the rigidity and stability of $3$-Lie algebra morphisms using the\nestablished cohomology theory. In particular, we show that if the first\ncohomology group is trivial, then the morphism is rigid; if the second\ncohomology group is trivial, then the morphism is stable. Finally, we study the\nstability of $3$-Lie subalgebras similarly.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"4291 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and rigidity of 3-Lie algebra morphisms\",\"authors\":\"Jun Jiang, Yunhe Sheng, Geyi Sun\",\"doi\":\"arxiv-2409.05041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first we use the higher derived brackets to construct an\\n$L_\\\\infty$-algebra, whose Maurer-Cartan elements are $3$-Lie algebra morphisms.\\nUsing the differential in the $L_\\\\infty$-algebra that govern deformations of\\nthe morphism, we give the cohomology of a $3$-Lie algebra morphism. Then we\\nstudy the rigidity and stability of $3$-Lie algebra morphisms using the\\nestablished cohomology theory. In particular, we show that if the first\\ncohomology group is trivial, then the morphism is rigid; if the second\\ncohomology group is trivial, then the morphism is stable. Finally, we study the\\nstability of $3$-Lie subalgebras similarly.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"4291 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先利用高导出括号构造了一个$L_\infty$-代数,其毛勒-卡尔坦元素是$3$-Lie代数态。利用$L_\infty$-代数中支配态变形的微分,我们给出了$3$-Lie代数态的同调。然后,我们利用已建立的同调理论研究了 3 美元李代数变形的刚性和稳定性。我们特别指出,如果第一同调群是微不足道的,那么态是刚性的;如果第二同调群是微不足道的,那么态是稳定的。最后,我们以类似的方法研究了 $3$-Lie 子代数的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and rigidity of 3-Lie algebra morphisms
In this paper, first we use the higher derived brackets to construct an $L_\infty$-algebra, whose Maurer-Cartan elements are $3$-Lie algebra morphisms. Using the differential in the $L_\infty$-algebra that govern deformations of the morphism, we give the cohomology of a $3$-Lie algebra morphism. Then we study the rigidity and stability of $3$-Lie algebra morphisms using the established cohomology theory. In particular, we show that if the first cohomology group is trivial, then the morphism is rigid; if the second cohomology group is trivial, then the morphism is stable. Finally, we study the stability of $3$-Lie subalgebras similarly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信