Pere Ara, Ken Goodearl, Pace P. Nielsen, Kevin C. O'Meara, Enrique Pardo, Francesc Perera
{"title":"单体和模块的取消等级","authors":"Pere Ara, Ken Goodearl, Pace P. Nielsen, Kevin C. O'Meara, Enrique Pardo, Francesc Perera","doi":"arxiv-2409.06880","DOIUrl":null,"url":null,"abstract":"Levels of cancellativity in commutative monoids $M$, determined by stable\nrank values in $\\mathbb{Z}_{> 0} \\cup \\{\\infty\\}$ for elements of $M$, are\ninvestigated. The behavior of the stable ranks of multiples $ka$, for $k \\in\n\\mathbb{Z}_{> 0}$ and $a \\in M$, is determined. In the case of a refinement\nmonoid $M$, the possible stable rank values in archimedean components of $M$\nare pinned down. Finally, stable rank in monoids built from isomorphism or\nother equivalence classes of modules over a ring is discussed.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levels of cancellation for monoids and modules\",\"authors\":\"Pere Ara, Ken Goodearl, Pace P. Nielsen, Kevin C. O'Meara, Enrique Pardo, Francesc Perera\",\"doi\":\"arxiv-2409.06880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Levels of cancellativity in commutative monoids $M$, determined by stable\\nrank values in $\\\\mathbb{Z}_{> 0} \\\\cup \\\\{\\\\infty\\\\}$ for elements of $M$, are\\ninvestigated. The behavior of the stable ranks of multiples $ka$, for $k \\\\in\\n\\\\mathbb{Z}_{> 0}$ and $a \\\\in M$, is determined. In the case of a refinement\\nmonoid $M$, the possible stable rank values in archimedean components of $M$\\nare pinned down. Finally, stable rank in monoids built from isomorphism or\\nother equivalence classes of modules over a ring is discussed.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Levels of cancellativity in commutative monoids $M$, determined by stable
rank values in $\mathbb{Z}_{> 0} \cup \{\infty\}$ for elements of $M$, are
investigated. The behavior of the stable ranks of multiples $ka$, for $k \in
\mathbb{Z}_{> 0}$ and $a \in M$, is determined. In the case of a refinement
monoid $M$, the possible stable rank values in archimedean components of $M$
are pinned down. Finally, stable rank in monoids built from isomorphism or
other equivalence classes of modules over a ring is discussed.