差分私有化合成高维表格流

Girish Kumar, Thomas Strohmer, Roman Vershynin
{"title":"差分私有化合成高维表格流","authors":"Girish Kumar, Thomas Strohmer, Roman Vershynin","doi":"arxiv-2409.00322","DOIUrl":null,"url":null,"abstract":"While differentially private synthetic data generation has been explored\nextensively in the literature, how to update this data in the future if the\nunderlying private data changes is much less understood. We propose an\nalgorithmic framework for streaming data that generates multiple synthetic\ndatasets over time, tracking changes in the underlying private data. Our\nalgorithm satisfies differential privacy for the entire input stream (continual\ndifferential privacy) and can be used for high-dimensional tabular data.\nFurthermore, we show the utility of our method via experiments on real-world\ndatasets. The proposed algorithm builds upon a popular select, measure, fit,\nand iterate paradigm (used by offline synthetic data generation algorithms) and\nprivate counters for streams.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially Private Synthetic High-dimensional Tabular Stream\",\"authors\":\"Girish Kumar, Thomas Strohmer, Roman Vershynin\",\"doi\":\"arxiv-2409.00322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While differentially private synthetic data generation has been explored\\nextensively in the literature, how to update this data in the future if the\\nunderlying private data changes is much less understood. We propose an\\nalgorithmic framework for streaming data that generates multiple synthetic\\ndatasets over time, tracking changes in the underlying private data. Our\\nalgorithm satisfies differential privacy for the entire input stream (continual\\ndifferential privacy) and can be used for high-dimensional tabular data.\\nFurthermore, we show the utility of our method via experiments on real-world\\ndatasets. The proposed algorithm builds upon a popular select, measure, fit,\\nand iterate paradigm (used by offline synthetic data generation algorithms) and\\nprivate counters for streams.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然文献中已经对差异化私有合成数据的生成进行了广泛的探索,但如果底层私有数据发生变化,如何在未来更新这些数据却鲜为人知。我们提出了流式数据分析算法框架,它可以随着时间的推移生成多个合成数据集,并跟踪底层隐私数据的变化。此外,我们还通过在真实世界数据集上的实验展示了我们方法的实用性。我们提出的算法建立在流行的选择、测量、拟合和迭代范式(用于离线合成数据生成算法)和流隐私计数器的基础之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially Private Synthetic High-dimensional Tabular Stream
While differentially private synthetic data generation has been explored extensively in the literature, how to update this data in the future if the underlying private data changes is much less understood. We propose an algorithmic framework for streaming data that generates multiple synthetic datasets over time, tracking changes in the underlying private data. Our algorithm satisfies differential privacy for the entire input stream (continual differential privacy) and can be used for high-dimensional tabular data. Furthermore, we show the utility of our method via experiments on real-world datasets. The proposed algorithm builds upon a popular select, measure, fit, and iterate paradigm (used by offline synthetic data generation algorithms) and private counters for streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信