通过方向规则性进行结构适应:多变量功能数据中的速率加速估计

Omar Kassi, Sunny G. W. Wang
{"title":"通过方向规则性进行结构适应:多变量功能数据中的速率加速估计","authors":"Omar Kassi, Sunny G. W. Wang","doi":"arxiv-2409.00817","DOIUrl":null,"url":null,"abstract":"We introduce directional regularity, a new definition of anisotropy for\nmultivariate functional data. Instead of taking the conventional view which\ndetermines anisotropy as a notion of smoothness along a dimension, directional\nregularity additionally views anisotropy through the lens of directions. We\nshow that faster rates of convergence can be obtained through a change-of-basis\nby adapting to the directional regularity of a multivariate process. An\nalgorithm for the estimation and identification of the change-of-basis matrix\nis constructed, made possible due to the unique replication structure of\nfunctional data. Non-asymptotic bounds are provided for our algorithm,\nsupplemented by numerical evidence from an extensive simulation study. We\ndiscuss two possible applications of the directional regularity approach, and\nadvocate its consideration as a standard pre-processing step in multivariate\nfunctional data analysis.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural adaptation via directional regularity: rate accelerated estimation in multivariate functional data\",\"authors\":\"Omar Kassi, Sunny G. W. Wang\",\"doi\":\"arxiv-2409.00817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce directional regularity, a new definition of anisotropy for\\nmultivariate functional data. Instead of taking the conventional view which\\ndetermines anisotropy as a notion of smoothness along a dimension, directional\\nregularity additionally views anisotropy through the lens of directions. We\\nshow that faster rates of convergence can be obtained through a change-of-basis\\nby adapting to the directional regularity of a multivariate process. An\\nalgorithm for the estimation and identification of the change-of-basis matrix\\nis constructed, made possible due to the unique replication structure of\\nfunctional data. Non-asymptotic bounds are provided for our algorithm,\\nsupplemented by numerical evidence from an extensive simulation study. We\\ndiscuss two possible applications of the directional regularity approach, and\\nadvocate its consideration as a standard pre-processing step in multivariate\\nfunctional data analysis.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了方向正则性--多变量函数数据各向异性的新定义。传统观点将各向异性定义为沿某一维度的平滑性概念,而方向正则性则通过方向的视角来看待各向异性。我们看到,通过改变基础,适应多变量过程的方向规则性,可以获得更快的收敛速度。由于功能数据具有独特的复制结构,我们构建了估算和识别变化基础矩阵的分析方法。我们为算法提供了非渐近界限,并通过广泛的模拟研究提供了数值证据作为补充。我们讨论了定向正则方法的两种可能应用,并主张将其作为多变量函数数据分析的标准预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural adaptation via directional regularity: rate accelerated estimation in multivariate functional data
We introduce directional regularity, a new definition of anisotropy for multivariate functional data. Instead of taking the conventional view which determines anisotropy as a notion of smoothness along a dimension, directional regularity additionally views anisotropy through the lens of directions. We show that faster rates of convergence can be obtained through a change-of-basis by adapting to the directional regularity of a multivariate process. An algorithm for the estimation and identification of the change-of-basis matrix is constructed, made possible due to the unique replication structure of functional data. Non-asymptotic bounds are provided for our algorithm, supplemented by numerical evidence from an extensive simulation study. We discuss two possible applications of the directional regularity approach, and advocate its consideration as a standard pre-processing step in multivariate functional data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信