用低度多项式检测相关随机块模型的计算过渡

Guanyi Chen, Jian Ding, Shuyang Gong, Zhangsong Li
{"title":"用低度多项式检测相关随机块模型的计算过渡","authors":"Guanyi Chen, Jian Ding, Shuyang Gong, Zhangsong Li","doi":"arxiv-2409.00966","DOIUrl":null,"url":null,"abstract":"Detection of correlation in a pair of random graphs is a fundamental\nstatistical and computational problem that has been extensively studied in\nrecent years. In this work, we consider a pair of correlated (sparse)\nstochastic block models $\\mathcal{S}(n,\\tfrac{\\lambda}{n};k,\\epsilon;s)$ that\nare subsampled from a common parent stochastic block model $\\mathcal\nS(n,\\tfrac{\\lambda}{n};k,\\epsilon)$ with $k=O(1)$ symmetric communities,\naverage degree $\\lambda=O(1)$, divergence parameter $\\epsilon$, and subsampling\nprobability $s$. For the detection problem of distinguishing this model from a pair of\nindependent Erd\\H{o}s-R\\'enyi graphs with the same edge density\n$\\mathcal{G}(n,\\tfrac{\\lambda s}{n})$, we focus on tests based on\n\\emph{low-degree polynomials} of the entries of the adjacency matrices, and we\ndetermine the threshold that separates the easy and hard regimes. More\nprecisely, we show that this class of tests can distinguish these two models if\nand only if $s> \\min \\{ \\sqrt{\\alpha}, \\frac{1}{\\lambda \\epsilon^2} \\}$, where\n$\\alpha\\approx 0.338$ is the Otter's constant and $\\frac{1}{\\lambda\n\\epsilon^2}$ is the Kesten-Stigum threshold. Our proof of low-degree hardness\nis based on a conditional variant of the low-degree likelihood calculation.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational transition for detecting correlated stochastic block models by low-degree polynomials\",\"authors\":\"Guanyi Chen, Jian Ding, Shuyang Gong, Zhangsong Li\",\"doi\":\"arxiv-2409.00966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of correlation in a pair of random graphs is a fundamental\\nstatistical and computational problem that has been extensively studied in\\nrecent years. In this work, we consider a pair of correlated (sparse)\\nstochastic block models $\\\\mathcal{S}(n,\\\\tfrac{\\\\lambda}{n};k,\\\\epsilon;s)$ that\\nare subsampled from a common parent stochastic block model $\\\\mathcal\\nS(n,\\\\tfrac{\\\\lambda}{n};k,\\\\epsilon)$ with $k=O(1)$ symmetric communities,\\naverage degree $\\\\lambda=O(1)$, divergence parameter $\\\\epsilon$, and subsampling\\nprobability $s$. For the detection problem of distinguishing this model from a pair of\\nindependent Erd\\\\H{o}s-R\\\\'enyi graphs with the same edge density\\n$\\\\mathcal{G}(n,\\\\tfrac{\\\\lambda s}{n})$, we focus on tests based on\\n\\\\emph{low-degree polynomials} of the entries of the adjacency matrices, and we\\ndetermine the threshold that separates the easy and hard regimes. More\\nprecisely, we show that this class of tests can distinguish these two models if\\nand only if $s> \\\\min \\\\{ \\\\sqrt{\\\\alpha}, \\\\frac{1}{\\\\lambda \\\\epsilon^2} \\\\}$, where\\n$\\\\alpha\\\\approx 0.338$ is the Otter's constant and $\\\\frac{1}{\\\\lambda\\n\\\\epsilon^2}$ is the Kesten-Stigum threshold. Our proof of low-degree hardness\\nis based on a conditional variant of the low-degree likelihood calculation.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一对随机图中检测相关性是一个基本的统计和计算问题,近年来已被广泛研究。在这项工作中,我们考虑了一对相关(稀疏)随机块模型 $\mathcal{S}(n,\tfrac\{lambda}{n};k,\epsilon;s)$ ,它们是从一个共同的父随机块模型 $\mathcalS(n,\tfrac\{lambda}{n};k,\epsilon)$,对称群落为 $k=O(1)$,平均度数为 $\lambda=O(1)$,发散参数为 $\epsilon$,子采样概率为 $s$。对于将该模型与一对具有相同边密度的独立 Erd\H{o}s-R\'enyi 图区分开来的检测问题,我们关注基于邻接矩阵项的(emph{low-degree polynomials})的测试,并确定了区分简单和困难两种情况的阈值。更确切地说,我们证明了这一类检验可以区分这两种模型,前提是:$s> \min \{ \sqrt\{alpha}, \frac{1}\{lambda \epsilon^2}.\其中$alpha/approx 0.338$是奥特常数,$frac{1}{lambda/epsilon^2}$是Kesten-Stigum阈值。我们的低度困难性证明是基于低度可能性计算的条件变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computational transition for detecting correlated stochastic block models by low-degree polynomials
Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years. In this work, we consider a pair of correlated (sparse) stochastic block models $\mathcal{S}(n,\tfrac{\lambda}{n};k,\epsilon;s)$ that are subsampled from a common parent stochastic block model $\mathcal S(n,\tfrac{\lambda}{n};k,\epsilon)$ with $k=O(1)$ symmetric communities, average degree $\lambda=O(1)$, divergence parameter $\epsilon$, and subsampling probability $s$. For the detection problem of distinguishing this model from a pair of independent Erd\H{o}s-R\'enyi graphs with the same edge density $\mathcal{G}(n,\tfrac{\lambda s}{n})$, we focus on tests based on \emph{low-degree polynomials} of the entries of the adjacency matrices, and we determine the threshold that separates the easy and hard regimes. More precisely, we show that this class of tests can distinguish these two models if and only if $s> \min \{ \sqrt{\alpha}, \frac{1}{\lambda \epsilon^2} \}$, where $\alpha\approx 0.338$ is the Otter's constant and $\frac{1}{\lambda \epsilon^2}$ is the Kesten-Stigum threshold. Our proof of low-degree hardness is based on a conditional variant of the low-degree likelihood calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信