{"title":"乘法霍普夫共轭群:定义与作用","authors":"Tao Yang","doi":"arxiv-2409.07788","DOIUrl":null,"url":null,"abstract":"This paper uses Galois maps to give a definition of generalized multiplier\nHopf coquasigroups, and give a sufficient and necessary condition for a\nmultiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then\ncoactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf\ncoquasigroups are also considered.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplier Hopf coquasigroup: Definition and Coactions\",\"authors\":\"Tao Yang\",\"doi\":\"arxiv-2409.07788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses Galois maps to give a definition of generalized multiplier\\nHopf coquasigroups, and give a sufficient and necessary condition for a\\nmultiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then\\ncoactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf\\ncoquasigroups are also considered.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"395 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplier Hopf coquasigroup: Definition and Coactions
This paper uses Galois maps to give a definition of generalized multiplier
Hopf coquasigroups, and give a sufficient and necessary condition for a
multiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then
coactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf
coquasigroups are also considered.