乘法霍普夫共轭群:定义与作用

Tao Yang
{"title":"乘法霍普夫共轭群:定义与作用","authors":"Tao Yang","doi":"arxiv-2409.07788","DOIUrl":null,"url":null,"abstract":"This paper uses Galois maps to give a definition of generalized multiplier\nHopf coquasigroups, and give a sufficient and necessary condition for a\nmultiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then\ncoactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf\ncoquasigroups are also considered.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplier Hopf coquasigroup: Definition and Coactions\",\"authors\":\"Tao Yang\",\"doi\":\"arxiv-2409.07788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses Galois maps to give a definition of generalized multiplier\\nHopf coquasigroups, and give a sufficient and necessary condition for a\\nmultiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then\\ncoactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf\\ncoquasigroups are also considered.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"395 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用伽罗瓦映射给出了广义乘数霍普夫共基群的定义,并给出了乘数双代数是正则乘数霍普夫共基群的充分必要条件。还考虑了正则乘数霍普夫共基群的 Thencoactions 和 Yetter-Drinfeld 准模子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplier Hopf coquasigroup: Definition and Coactions
This paper uses Galois maps to give a definition of generalized multiplier Hopf coquasigroups, and give a sufficient and necessary condition for a multiplier bialgebra to be a regular multiplier Hopf coquasigroup. Then coactions and Yetter-Drinfeld quasimodules of regular multiplier Hopf coquasigroups are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信