{"title":"次模态函数、广义包络面体、保形前序和共作用双贝叶斯","authors":"Gunnar Fløystad, Dominique Manchon","doi":"arxiv-2409.08200","DOIUrl":null,"url":null,"abstract":"To a submodular function we define a class of preorders, conforming\npreorders. A submodular function $z$ corresponds to a generalized permutahedron\n$\\Pi(z)$. We show the faces of $\\Pi(z)$ are in bijection with the conforming\npreorders. The face poset structure of $\\Pi(z)$ induces two order relations\n$\\lhd$ and $\\blacktriangleleft$ on conforming preorder, and we investigate\ntheir properties. Ardila and Aguiar introduced a Hopf monoid of submodular\nfunctions/generalized permutahedra. We show there is a cointeracting bimonoid\nof modular functions. By recent theory of L.Foissy this associates a canonical\npolynomial to any submodular function.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submodular functions, generalized permutahedra, conforming preorders, and cointeracting bialgebras\",\"authors\":\"Gunnar Fløystad, Dominique Manchon\",\"doi\":\"arxiv-2409.08200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To a submodular function we define a class of preorders, conforming\\npreorders. A submodular function $z$ corresponds to a generalized permutahedron\\n$\\\\Pi(z)$. We show the faces of $\\\\Pi(z)$ are in bijection with the conforming\\npreorders. The face poset structure of $\\\\Pi(z)$ induces two order relations\\n$\\\\lhd$ and $\\\\blacktriangleleft$ on conforming preorder, and we investigate\\ntheir properties. Ardila and Aguiar introduced a Hopf monoid of submodular\\nfunctions/generalized permutahedra. We show there is a cointeracting bimonoid\\nof modular functions. By recent theory of L.Foissy this associates a canonical\\npolynomial to any submodular function.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Submodular functions, generalized permutahedra, conforming preorders, and cointeracting bialgebras
To a submodular function we define a class of preorders, conforming
preorders. A submodular function $z$ corresponds to a generalized permutahedron
$\Pi(z)$. We show the faces of $\Pi(z)$ are in bijection with the conforming
preorders. The face poset structure of $\Pi(z)$ induces two order relations
$\lhd$ and $\blacktriangleleft$ on conforming preorder, and we investigate
their properties. Ardila and Aguiar introduced a Hopf monoid of submodular
functions/generalized permutahedra. We show there is a cointeracting bimonoid
of modular functions. By recent theory of L.Foissy this associates a canonical
polynomial to any submodular function.