M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack
{"title":"利用阿塔卡马宇宙学望远镜和暗能量巡天进行超集群研究:II.热气体、星系和暗物质中各向异性的大尺度一致性","authors":"M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack","doi":"arxiv-2409.04535","DOIUrl":null,"url":null,"abstract":"Statistics that capture the directional dependence of the baryon distribution\nin the cosmic web enable unique tests of cosmology and astrophysical feedback.\nWe use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps\nto measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from\ngalaxy clusters embedded in massive filaments and superclusters. The cluster\nselection and orientation (at a scale of $\\sim15$ Mpc) use Dark Energy Survey\n(DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope\nData Release 6 enable a $\\sim3\\times$ more significant measurement of the\nextended gas compared to the technique's proof-of-concept. Decomposing stacks\ninto cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole\n($m=2$) at $8-10\\sigma$, as well as evidence for $m=4$ signal at up to\n$6\\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to\nthe Cardinal simulations with spherical gas models pasted onto dark matter\nhalos. The fiducial tSZ data can discriminate between two models that deplete\npressure differently in low-mass halos (mimicking astrophysical feedback),\npreferring higher average pressure in extended structures. However, uncertainty\nin the amount of cosmic infrared background contamination reduces the\nconstraining power. Additionally, we apply the technique to DES galaxy density\nand weak lensing to study for the first time their oriented relationships with\ntSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales,\nwe observe dependence on redshift but not shape or radial distance. Thus, on\nlarge scales, the superclustering of gas pressure, galaxies, and total matter\nis coherent in shape and extent.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter\",\"authors\":\"M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack\",\"doi\":\"arxiv-2409.04535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistics that capture the directional dependence of the baryon distribution\\nin the cosmic web enable unique tests of cosmology and astrophysical feedback.\\nWe use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps\\nto measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from\\ngalaxy clusters embedded in massive filaments and superclusters. The cluster\\nselection and orientation (at a scale of $\\\\sim15$ Mpc) use Dark Energy Survey\\n(DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope\\nData Release 6 enable a $\\\\sim3\\\\times$ more significant measurement of the\\nextended gas compared to the technique's proof-of-concept. Decomposing stacks\\ninto cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole\\n($m=2$) at $8-10\\\\sigma$, as well as evidence for $m=4$ signal at up to\\n$6\\\\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to\\nthe Cardinal simulations with spherical gas models pasted onto dark matter\\nhalos. The fiducial tSZ data can discriminate between two models that deplete\\npressure differently in low-mass halos (mimicking astrophysical feedback),\\npreferring higher average pressure in extended structures. However, uncertainty\\nin the amount of cosmic infrared background contamination reduces the\\nconstraining power. Additionally, we apply the technique to DES galaxy density\\nand weak lensing to study for the first time their oriented relationships with\\ntSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales,\\nwe observe dependence on redshift but not shape or radial distance. Thus, on\\nlarge scales, the superclustering of gas pressure, galaxies, and total matter\\nis coherent in shape and extent.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter
Statistics that capture the directional dependence of the baryon distribution
in the cosmic web enable unique tests of cosmology and astrophysical feedback.
We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps
to measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from
galaxy clusters embedded in massive filaments and superclusters. The cluster
selection and orientation (at a scale of $\sim15$ Mpc) use Dark Energy Survey
(DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope
Data Release 6 enable a $\sim3\times$ more significant measurement of the
extended gas compared to the technique's proof-of-concept. Decomposing stacks
into cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole
($m=2$) at $8-10\sigma$, as well as evidence for $m=4$ signal at up to
$6\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to
the Cardinal simulations with spherical gas models pasted onto dark matter
halos. The fiducial tSZ data can discriminate between two models that deplete
pressure differently in low-mass halos (mimicking astrophysical feedback),
preferring higher average pressure in extended structures. However, uncertainty
in the amount of cosmic infrared background contamination reduces the
constraining power. Additionally, we apply the technique to DES galaxy density
and weak lensing to study for the first time their oriented relationships with
tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales,
we observe dependence on redshift but not shape or radial distance. Thus, on
large scales, the superclustering of gas pressure, galaxies, and total matter
is coherent in shape and extent.