利用阿塔卡马宇宙学望远镜和暗能量巡天进行超集群研究:II.热气体、星系和暗物质中各向异性的大尺度一致性

M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack
{"title":"利用阿塔卡马宇宙学望远镜和暗能量巡天进行超集群研究:II.热气体、星系和暗物质中各向异性的大尺度一致性","authors":"M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack","doi":"arxiv-2409.04535","DOIUrl":null,"url":null,"abstract":"Statistics that capture the directional dependence of the baryon distribution\nin the cosmic web enable unique tests of cosmology and astrophysical feedback.\nWe use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps\nto measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from\ngalaxy clusters embedded in massive filaments and superclusters. The cluster\nselection and orientation (at a scale of $\\sim15$ Mpc) use Dark Energy Survey\n(DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope\nData Release 6 enable a $\\sim3\\times$ more significant measurement of the\nextended gas compared to the technique's proof-of-concept. Decomposing stacks\ninto cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole\n($m=2$) at $8-10\\sigma$, as well as evidence for $m=4$ signal at up to\n$6\\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to\nthe Cardinal simulations with spherical gas models pasted onto dark matter\nhalos. The fiducial tSZ data can discriminate between two models that deplete\npressure differently in low-mass halos (mimicking astrophysical feedback),\npreferring higher average pressure in extended structures. However, uncertainty\nin the amount of cosmic infrared background contamination reduces the\nconstraining power. Additionally, we apply the technique to DES galaxy density\nand weak lensing to study for the first time their oriented relationships with\ntSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales,\nwe observe dependence on redshift but not shape or radial distance. Thus, on\nlarge scales, the superclustering of gas pressure, galaxies, and total matter\nis coherent in shape and extent.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter\",\"authors\":\"M. Lokken, A. van Engelen, M. Aguena, S. S. Allam, D. Anbajagane, D. Bacon, E. Baxter, J. Blazek, S. Bocquet, J. R. Bond, D. Brooks, E. Calabrese, A. Carnero Rosell, J. Carretero, M. Costanzi, L. N. da Costa, W. R. Coulton, J. De Vicente, S. Desai, P. Doel, C. Doux, A. J. Duivenvoorden, J. Dunkley, Z. Huang, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, M. Gatti, E. Gaztanaga, G. Giannini, V. Gluscevic, D. Gruen, R. A. Gruendl, Y. Guan, G. Gutierrez, S. R. Hinton, R. Hložek, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, S. Lee, Z. Li, M. Madhavacheril, G. A. Marques, J. L. Marshall, J. Mena-Fernández, F. Menanteau, R. Miquel, J. Myles, M. D. Niemack, S. Pandey, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, A. Porredon, M. Rodríguez-Monroy, A. Roodman, S. Samuroff, E. Sanchez, D. Sanchez Cid, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Sifón, M. Smith, S. Staggs, E. Suchyta, M. E. C. Swanson, G. Tarle, C-H. To, N. Weaverdyck, P. Wiseman, E. J. Wollack\",\"doi\":\"arxiv-2409.04535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistics that capture the directional dependence of the baryon distribution\\nin the cosmic web enable unique tests of cosmology and astrophysical feedback.\\nWe use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps\\nto measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from\\ngalaxy clusters embedded in massive filaments and superclusters. The cluster\\nselection and orientation (at a scale of $\\\\sim15$ Mpc) use Dark Energy Survey\\n(DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope\\nData Release 6 enable a $\\\\sim3\\\\times$ more significant measurement of the\\nextended gas compared to the technique's proof-of-concept. Decomposing stacks\\ninto cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole\\n($m=2$) at $8-10\\\\sigma$, as well as evidence for $m=4$ signal at up to\\n$6\\\\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to\\nthe Cardinal simulations with spherical gas models pasted onto dark matter\\nhalos. The fiducial tSZ data can discriminate between two models that deplete\\npressure differently in low-mass halos (mimicking astrophysical feedback),\\npreferring higher average pressure in extended structures. However, uncertainty\\nin the amount of cosmic infrared background contamination reduces the\\nconstraining power. Additionally, we apply the technique to DES galaxy density\\nand weak lensing to study for the first time their oriented relationships with\\ntSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales,\\nwe observe dependence on redshift but not shape or radial distance. Thus, on\\nlarge scales, the superclustering of gas pressure, galaxies, and total matter\\nis coherent in shape and extent.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用热苏尼耶夫-泽尔多维奇(tSZ)地图的约束定向堆叠,测量了嵌入大质量细丝和超星系团中的星系团外2.5-40Mpc热气体的各向异性分布。星系团的选择和定向(尺度为15 Mpc)使用了暗能量巡天(DES)第3年的数据,而来自阿塔卡马宇宙学望远镜数据第6版的扩展tSZ地图使对扩展气体的测量比该技术的概念验证更为显著。我们将堆栈分解为阶数为$m$的余弦多极子,在8-10(sigma)$时探测到偶极子($m=1$)和四极子($m=2$),并在高达6(sigma)$时探测到$m=4$的信号,这表明了对晚期非高斯性的敏感性。我们将卡迪纳尔模拟与粘贴在暗物质光环上的球形气体模型进行了比较。在这两个模型中,低质量光环的压力损耗不同(模拟天体物理反馈),而扩展结构的平均压力更高。然而,宇宙红外背景污染量的不确定性降低了限制能力。此外,我们还将该技术应用于DES星系密度和弱透镜,首次研究了它们与tSZ的定向关系。在tSZ与透镜的关系中,在7.5 Mpc(横向)尺度上的平均值,我们观察到了对红移的依赖,而不是对形状或径向距离的依赖。因此,在大尺度上,气体压力、星系和总物质的超聚在形状和范围上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter
Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of $\sim15$ Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a $\sim3\times$ more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order $m$, we detect a dipole ($m=1$) and quadrupole ($m=2$) at $8-10\sigma$, as well as evidence for $m=4$ signal at up to $6\sigma$, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信