多项式模型的可识别性源自第一原理和格伯纳基础方法

Janet D. Godolphin, James D. E. Grant
{"title":"多项式模型的可识别性源自第一原理和格伯纳基础方法","authors":"Janet D. Godolphin, James D. E. Grant","doi":"arxiv-2409.07062","DOIUrl":null,"url":null,"abstract":"The relationship between a set of design points and the class of hierarchical\npolynomial models identifiable from the design is investigated. Saturated\nmodels are of particular interest. Necessary and sufficient conditions are\nderived on the set of design points for specific terms to be included in leaves\nof the statistical fan. A practitioner led approach to building hierarchical\nsaturated models that are identifiable is developed. This approach is compared\nto the method of model building based on Gr\\\"{o}bner bases. The main results\nare illustrated by examples.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifiability of Polynomial Models from First Principles and via a Gröbner Basis Approach\",\"authors\":\"Janet D. Godolphin, James D. E. Grant\",\"doi\":\"arxiv-2409.07062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between a set of design points and the class of hierarchical\\npolynomial models identifiable from the design is investigated. Saturated\\nmodels are of particular interest. Necessary and sufficient conditions are\\nderived on the set of design points for specific terms to be included in leaves\\nof the statistical fan. A practitioner led approach to building hierarchical\\nsaturated models that are identifiable is developed. This approach is compared\\nto the method of model building based on Gr\\\\\\\"{o}bner bases. The main results\\nare illustrated by examples.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一组设计点与可从设计中识别的分层多项式模型类别之间的关系。饱和模型尤其值得关注。研究得出了设计点集合的必要条件和充分条件,以便在统计扇叶中包含特定项。开发了一种由实践者主导的方法来建立可识别的分层饱和模型。这种方法与基于 Gr\"{o}bner 基的模型构建方法进行了比较。通过实例说明了主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifiability of Polynomial Models from First Principles and via a Gröbner Basis Approach
The relationship between a set of design points and the class of hierarchical polynomial models identifiable from the design is investigated. Saturated models are of particular interest. Necessary and sufficient conditions are derived on the set of design points for specific terms to be included in leaves of the statistical fan. A practitioner led approach to building hierarchical saturated models that are identifiable is developed. This approach is compared to the method of model building based on Gr\"{o}bner bases. The main results are illustrated by examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信