利用受限玻尔兹曼机中的目标能量进行比率发散学习:超越库尔贝克--莱布勒发散学习

Yuichi Ishida, Yuma Ichikawa, Aki Dote, Toshiyuki Miyazawa, Koji Hukushima
{"title":"利用受限玻尔兹曼机中的目标能量进行比率发散学习:超越库尔贝克--莱布勒发散学习","authors":"Yuichi Ishida, Yuma Ichikawa, Aki Dote, Toshiyuki Miyazawa, Koji Hukushima","doi":"arxiv-2409.07679","DOIUrl":null,"url":null,"abstract":"We propose ratio divergence (RD) learning for discrete energy-based models, a\nmethod that utilizes both training data and a tractable target energy function.\nWe apply RD learning to restricted Boltzmann machines (RBMs), which are a\nminimal model that satisfies the universal approximation theorem for discrete\ndistributions. RD learning combines the strength of both forward and reverse\nKullback-Leibler divergence (KLD) learning, effectively addressing the\n\"notorious\" issues of underfitting with the forward KLD and mode-collapse with\nthe reverse KLD. Since the summation of forward and reverse KLD seems to be\nsufficient to combine the strength of both approaches, we include this learning\nmethod as a direct baseline in numerical experiments to evaluate its\neffectiveness. Numerical experiments demonstrate that RD learning significantly\noutperforms other learning methods in terms of energy function fitting,\nmode-covering, and learning stability across various discrete energy-based\nmodels. Moreover, the performance gaps between RD learning and the other\nlearning methods become more pronounced as the dimensions of target models\nincrease.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ratio Divergence Learning Using Target Energy in Restricted Boltzmann Machines: Beyond Kullback--Leibler Divergence Learning\",\"authors\":\"Yuichi Ishida, Yuma Ichikawa, Aki Dote, Toshiyuki Miyazawa, Koji Hukushima\",\"doi\":\"arxiv-2409.07679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ratio divergence (RD) learning for discrete energy-based models, a\\nmethod that utilizes both training data and a tractable target energy function.\\nWe apply RD learning to restricted Boltzmann machines (RBMs), which are a\\nminimal model that satisfies the universal approximation theorem for discrete\\ndistributions. RD learning combines the strength of both forward and reverse\\nKullback-Leibler divergence (KLD) learning, effectively addressing the\\n\\\"notorious\\\" issues of underfitting with the forward KLD and mode-collapse with\\nthe reverse KLD. Since the summation of forward and reverse KLD seems to be\\nsufficient to combine the strength of both approaches, we include this learning\\nmethod as a direct baseline in numerical experiments to evaluate its\\neffectiveness. Numerical experiments demonstrate that RD learning significantly\\noutperforms other learning methods in terms of energy function fitting,\\nmode-covering, and learning stability across various discrete energy-based\\nmodels. Moreover, the performance gaps between RD learning and the other\\nlearning methods become more pronounced as the dimensions of target models\\nincrease.\",\"PeriodicalId\":501379,\"journal\":{\"name\":\"arXiv - STAT - Statistics Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们针对基于离散能量的模型提出了比值发散(RD)学习法,这种方法既利用了训练数据,又利用了可操作的目标能量函数。我们将比值发散学习法应用于受限玻尔兹曼机(RBM),RBM是一种满足离散分布普遍逼近定理的最小模型。RD 学习结合了正向和反向 Kullback-Leibler 发散(KLD)学习的优点,有效地解决了正向 KLD 的欠拟合和反向 KLD 的模式坍缩等 "臭名昭著 "的问题。由于正向 KLD 和反向 KLD 的总和似乎足以综合两种方法的优势,我们将这种学习方法作为直接基线纳入数值实验,以评估其效果。数值实验证明,在各种基于离散能量的模型中,RD 学习方法在能量函数拟合、模式覆盖和学习稳定性方面明显优于其他学习方法。此外,随着目标模型维度的增加,RD 学习与其他学习方法之间的性能差距变得更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ratio Divergence Learning Using Target Energy in Restricted Boltzmann Machines: Beyond Kullback--Leibler Divergence Learning
We propose ratio divergence (RD) learning for discrete energy-based models, a method that utilizes both training data and a tractable target energy function. We apply RD learning to restricted Boltzmann machines (RBMs), which are a minimal model that satisfies the universal approximation theorem for discrete distributions. RD learning combines the strength of both forward and reverse Kullback-Leibler divergence (KLD) learning, effectively addressing the "notorious" issues of underfitting with the forward KLD and mode-collapse with the reverse KLD. Since the summation of forward and reverse KLD seems to be sufficient to combine the strength of both approaches, we include this learning method as a direct baseline in numerical experiments to evaluate its effectiveness. Numerical experiments demonstrate that RD learning significantly outperforms other learning methods in terms of energy function fitting, mode-covering, and learning stability across various discrete energy-based models. Moreover, the performance gaps between RD learning and the other learning methods become more pronounced as the dimensions of target models increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信