J. Chaves-Montero, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. Kremin, A. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver
{"title":"ForestFlow:从线性到非线性尺度的莱曼-$α$森林聚类的宇宙学模拟","authors":"J. Chaves-Montero, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. Kremin, A. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver","doi":"arxiv-2409.05682","DOIUrl":null,"url":null,"abstract":"On large scales, measurements of the Lyman-$\\alpha$ forest offer insights\ninto the expansion history of the Universe, while on small scales, these impose\nstrict constraints on the growth history, the nature of dark matter, and the\nsum of neutrino masses. This work introduces ForestFlow, a cosmological\nemulator designed to bridge the gap between large- and small-scale\nLyman-$\\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow\nemulates the 2 Lyman-$\\alpha$ linear biases ($b_\\delta$ and $b_\\eta$) and 6\nparameters describing small-scale deviations of the 3D flux power spectrum\n($P_\\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a\nfunction of cosmology $\\unicode{x2013}$ the small-scale amplitude and slope of\nthe linear power spectrum $\\unicode{x2013}$ and the physics of the\nintergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow\ncan predict $P_\\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D\nflux power spectrum ($P_\\mathrm{1D}$) $\\unicode{x2013}$ the primary observable\nfor small-scale analyses $\\unicode{x2013}$ without the need for interpolation\nor extrapolation. Consequently, ForestFlow enables for the first time\nmultiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological\nhydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow\nachieves $3$ and $1.5\\%$ precision in describing $P_\\mathrm{3D}$ and\n$P_\\mathrm{1D}$ from linear scales to $k=5\\,\\mathrm{Mpc}^{-1}$ and\n$k_\\parallel=4\\,\\mathrm{Mpc}^{-1}$, respectively. Thanks to its\nparameterization, the precision of the emulator is also similar for both\nionization histories and two extensions to the $\\Lambda$CDM model\n$\\unicode{x2013}$ massive neutrinos and curvature $\\unicode{x2013}$ not\nincluded in the training set. ForestFlow will be crucial for the cosmological\nanalysis of Lyman-$\\alpha$ forest measurements from the DESI survey.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ForestFlow: cosmological emulation of Lyman-$α$ forest clustering from linear to nonlinear scales\",\"authors\":\"J. Chaves-Montero, L. Cabayol-Garcia, M. Lokken, A. Font-Ribera, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, S. Cole, A. de la Macorra, S. Ferraro, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, G. Gutierrez, K. Honscheid, R. Kehoe, D. Kirkby, A. Kremin, A. Lambert, M. Landriau, M. Manera, P. Martini, R. Miquel, A. Muñoz-Gutiérrez, G. Niz, I. Pérez-Ràfols, G. Rossi, E. Sanchez, M. Schubnell, D. Sprayberry, G. Tarlé, B. A. Weaver\",\"doi\":\"arxiv-2409.05682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On large scales, measurements of the Lyman-$\\\\alpha$ forest offer insights\\ninto the expansion history of the Universe, while on small scales, these impose\\nstrict constraints on the growth history, the nature of dark matter, and the\\nsum of neutrino masses. This work introduces ForestFlow, a cosmological\\nemulator designed to bridge the gap between large- and small-scale\\nLyman-$\\\\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow\\nemulates the 2 Lyman-$\\\\alpha$ linear biases ($b_\\\\delta$ and $b_\\\\eta$) and 6\\nparameters describing small-scale deviations of the 3D flux power spectrum\\n($P_\\\\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a\\nfunction of cosmology $\\\\unicode{x2013}$ the small-scale amplitude and slope of\\nthe linear power spectrum $\\\\unicode{x2013}$ and the physics of the\\nintergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow\\ncan predict $P_\\\\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D\\nflux power spectrum ($P_\\\\mathrm{1D}$) $\\\\unicode{x2013}$ the primary observable\\nfor small-scale analyses $\\\\unicode{x2013}$ without the need for interpolation\\nor extrapolation. Consequently, ForestFlow enables for the first time\\nmultiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological\\nhydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow\\nachieves $3$ and $1.5\\\\%$ precision in describing $P_\\\\mathrm{3D}$ and\\n$P_\\\\mathrm{1D}$ from linear scales to $k=5\\\\,\\\\mathrm{Mpc}^{-1}$ and\\n$k_\\\\parallel=4\\\\,\\\\mathrm{Mpc}^{-1}$, respectively. Thanks to its\\nparameterization, the precision of the emulator is also similar for both\\nionization histories and two extensions to the $\\\\Lambda$CDM model\\n$\\\\unicode{x2013}$ massive neutrinos and curvature $\\\\unicode{x2013}$ not\\nincluded in the training set. ForestFlow will be crucial for the cosmological\\nanalysis of Lyman-$\\\\alpha$ forest measurements from the DESI survey.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ForestFlow: cosmological emulation of Lyman-$α$ forest clustering from linear to nonlinear scales
On large scales, measurements of the Lyman-$\alpha$ forest offer insights
into the expansion history of the Universe, while on small scales, these impose
strict constraints on the growth history, the nature of dark matter, and the
sum of neutrino masses. This work introduces ForestFlow, a cosmological
emulator designed to bridge the gap between large- and small-scale
Lyman-$\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow
emulates the 2 Lyman-$\alpha$ linear biases ($b_\delta$ and $b_\eta$) and 6
parameters describing small-scale deviations of the 3D flux power spectrum
($P_\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a
function of cosmology $\unicode{x2013}$ the small-scale amplitude and slope of
the linear power spectrum $\unicode{x2013}$ and the physics of the
intergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow
can predict $P_\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D
flux power spectrum ($P_\mathrm{1D}$) $\unicode{x2013}$ the primary observable
for small-scale analyses $\unicode{x2013}$ without the need for interpolation
or extrapolation. Consequently, ForestFlow enables for the first time
multiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological
hydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow
achieves $3$ and $1.5\%$ precision in describing $P_\mathrm{3D}$ and
$P_\mathrm{1D}$ from linear scales to $k=5\,\mathrm{Mpc}^{-1}$ and
$k_\parallel=4\,\mathrm{Mpc}^{-1}$, respectively. Thanks to its
parameterization, the precision of the emulator is also similar for both
ionization histories and two extensions to the $\Lambda$CDM model
$\unicode{x2013}$ massive neutrinos and curvature $\unicode{x2013}$ not
included in the training set. ForestFlow will be crucial for the cosmological
analysis of Lyman-$\alpha$ forest measurements from the DESI survey.