Xunming Wang, Danfeng Li, Bingqi Zhu, Zhenting Wang, Caixia Zhang, Xin Geng, Likun Han, Yang Zheng, Diwen Cai
{"title":"戈壁滩灰尘沉积和物理风化强度的实验分析","authors":"Xunming Wang, Danfeng Li, Bingqi Zhu, Zhenting Wang, Caixia Zhang, Xin Geng, Likun Han, Yang Zheng, Diwen Cai","doi":"10.1007/s11707-024-1115-0","DOIUrl":null,"url":null,"abstract":"<p>Surface soil materials from the Gobi Desert were sieved into fraction groups of 0.063–0.125, 0.125–0.25, 0.25–0.5, 0.5–1, and 1–2 mm. These samples were placed in a field for a physical weathering and dust deposition experiment. In the natural Gobi Desert environment, the dust-sized fractions (< 0.063 mm in diameter) produced by physical weathering and via dust deposition in the above groups were 1387 ± 124, 702 ± 70, 698 ± 47, 742 ± 101, and 769 ± 75 gm<sup>−2</sup>, respectively, from 18 October 2020 to 18 December 2021. Dust deposition during the same period was 611 ± 55 gm<sup>−2</sup>. For the same respective groups, 5.32 ± 0.76%, 0.58 ± 0.27%, 0.53 ± 0.18%, 0.80 ± 0.52%, and 0.98 ± 0.31% (by weight) of the bulk samples were weathered into dust-sized fractions during the experimental period. The physical weathering intensities were 23.95%, 14.96%, 8.90%, and 2.81% by weight for fraction groups of 2–4, 4–8, 8–16, and > 16 mm, respectively. The fine-grained materials of the gravel were more sensitive to physical weathering than coarse materials. In natural environments, the processes of dust deposition and physical weathering were key factors affecting the surface topographical equilibrium of the Gobi Desert and dust emission in Asia.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"44 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert\",\"authors\":\"Xunming Wang, Danfeng Li, Bingqi Zhu, Zhenting Wang, Caixia Zhang, Xin Geng, Likun Han, Yang Zheng, Diwen Cai\",\"doi\":\"10.1007/s11707-024-1115-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface soil materials from the Gobi Desert were sieved into fraction groups of 0.063–0.125, 0.125–0.25, 0.25–0.5, 0.5–1, and 1–2 mm. These samples were placed in a field for a physical weathering and dust deposition experiment. In the natural Gobi Desert environment, the dust-sized fractions (< 0.063 mm in diameter) produced by physical weathering and via dust deposition in the above groups were 1387 ± 124, 702 ± 70, 698 ± 47, 742 ± 101, and 769 ± 75 gm<sup>−2</sup>, respectively, from 18 October 2020 to 18 December 2021. Dust deposition during the same period was 611 ± 55 gm<sup>−2</sup>. For the same respective groups, 5.32 ± 0.76%, 0.58 ± 0.27%, 0.53 ± 0.18%, 0.80 ± 0.52%, and 0.98 ± 0.31% (by weight) of the bulk samples were weathered into dust-sized fractions during the experimental period. The physical weathering intensities were 23.95%, 14.96%, 8.90%, and 2.81% by weight for fraction groups of 2–4, 4–8, 8–16, and > 16 mm, respectively. The fine-grained materials of the gravel were more sensitive to physical weathering than coarse materials. In natural environments, the processes of dust deposition and physical weathering were key factors affecting the surface topographical equilibrium of the Gobi Desert and dust emission in Asia.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-024-1115-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-024-1115-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert
Surface soil materials from the Gobi Desert were sieved into fraction groups of 0.063–0.125, 0.125–0.25, 0.25–0.5, 0.5–1, and 1–2 mm. These samples were placed in a field for a physical weathering and dust deposition experiment. In the natural Gobi Desert environment, the dust-sized fractions (< 0.063 mm in diameter) produced by physical weathering and via dust deposition in the above groups were 1387 ± 124, 702 ± 70, 698 ± 47, 742 ± 101, and 769 ± 75 gm−2, respectively, from 18 October 2020 to 18 December 2021. Dust deposition during the same period was 611 ± 55 gm−2. For the same respective groups, 5.32 ± 0.76%, 0.58 ± 0.27%, 0.53 ± 0.18%, 0.80 ± 0.52%, and 0.98 ± 0.31% (by weight) of the bulk samples were weathered into dust-sized fractions during the experimental period. The physical weathering intensities were 23.95%, 14.96%, 8.90%, and 2.81% by weight for fraction groups of 2–4, 4–8, 8–16, and > 16 mm, respectively. The fine-grained materials of the gravel were more sensitive to physical weathering than coarse materials. In natural environments, the processes of dust deposition and physical weathering were key factors affecting the surface topographical equilibrium of the Gobi Desert and dust emission in Asia.
期刊介绍:
Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities