用概率答案集编程法解决决策理论问题

Damiano Azzolini, Elena Bellodi, Rafael Kiesel, Fabrizio Riguzzi
{"title":"用概率答案集编程法解决决策理论问题","authors":"Damiano Azzolini, Elena Bellodi, Rafael Kiesel, Fabrizio Riguzzi","doi":"arxiv-2408.11371","DOIUrl":null,"url":null,"abstract":"Solving a decision theory problem usually involves finding the actions, among\na set of possible ones, which optimize the expected reward, possibly accounting\nfor the uncertainty of the environment. In this paper, we introduce the\npossibility to encode decision theory problems with Probabilistic Answer Set\nProgramming under the credal semantics via decision atoms and utility\nattributes. To solve the task we propose an algorithm based on three layers of\nAlgebraic Model Counting, that we test on several synthetic datasets against an\nalgorithm that adopts answer set enumeration. Empirical results show that our\nalgorithm can manage non trivial instances of programs in a reasonable amount\nof time. Under consideration in Theory and Practice of Logic Programming\n(TPLP).","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Decision Theory Problems with Probabilistic Answer Set Programming\",\"authors\":\"Damiano Azzolini, Elena Bellodi, Rafael Kiesel, Fabrizio Riguzzi\",\"doi\":\"arxiv-2408.11371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving a decision theory problem usually involves finding the actions, among\\na set of possible ones, which optimize the expected reward, possibly accounting\\nfor the uncertainty of the environment. In this paper, we introduce the\\npossibility to encode decision theory problems with Probabilistic Answer Set\\nProgramming under the credal semantics via decision atoms and utility\\nattributes. To solve the task we propose an algorithm based on three layers of\\nAlgebraic Model Counting, that we test on several synthetic datasets against an\\nalgorithm that adopts answer set enumeration. Empirical results show that our\\nalgorithm can manage non trivial instances of programs in a reasonable amount\\nof time. Under consideration in Theory and Practice of Logic Programming\\n(TPLP).\",\"PeriodicalId\":501208,\"journal\":{\"name\":\"arXiv - CS - Logic in Computer Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决决策论问题通常涉及在一组可能的行动中找出能优化预期回报的行动,同时可能考虑到环境的不确定性。在本文中,我们通过决策原子和效用属性,介绍了在信元语义下用概率答案集编程对决策论问题进行编码的可能性。为了解决这个问题,我们提出了一种基于三层代数模型计数的算法,并在几个合成数据集上与采用答案集枚举的算法进行了对比测试。实证结果表明,我们的算法可以在合理的时间内管理非琐碎的程序实例。正在《逻辑编程理论与实践》(TPLP)上发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Decision Theory Problems with Probabilistic Answer Set Programming
Solving a decision theory problem usually involves finding the actions, among a set of possible ones, which optimize the expected reward, possibly accounting for the uncertainty of the environment. In this paper, we introduce the possibility to encode decision theory problems with Probabilistic Answer Set Programming under the credal semantics via decision atoms and utility attributes. To solve the task we propose an algorithm based on three layers of Algebraic Model Counting, that we test on several synthetic datasets against an algorithm that adopts answer set enumeration. Empirical results show that our algorithm can manage non trivial instances of programs in a reasonable amount of time. Under consideration in Theory and Practice of Logic Programming (TPLP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信