{"title":"不流泪的等价形式化","authors":"Tom de Jong","doi":"arxiv-2408.11501","DOIUrl":null,"url":null,"abstract":"This expository note describes two convenient techniques in the context of\nhomotopy type theory for proving and formalizing that a given map is an\nequivalence. The first technique decomposes the map as a series of basic\nequivalences, while the second refines this approach using the 3-for-2 property\nof equivalences. The techniques are illustrated by proving a basic result in\nsynthetic homotopy theory.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formalizing equivalences without tears\",\"authors\":\"Tom de Jong\",\"doi\":\"arxiv-2408.11501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This expository note describes two convenient techniques in the context of\\nhomotopy type theory for proving and formalizing that a given map is an\\nequivalence. The first technique decomposes the map as a series of basic\\nequivalences, while the second refines this approach using the 3-for-2 property\\nof equivalences. The techniques are illustrated by proving a basic result in\\nsynthetic homotopy theory.\",\"PeriodicalId\":501208,\"journal\":{\"name\":\"arXiv - CS - Logic in Computer Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This expository note describes two convenient techniques in the context of
homotopy type theory for proving and formalizing that a given map is an
equivalence. The first technique decomposes the map as a series of basic
equivalences, while the second refines this approach using the 3-for-2 property
of equivalences. The techniques are illustrated by proving a basic result in
synthetic homotopy theory.