Xiaoying Zhuang, Wenjie Fan, Hongwei Guo, Xuefeng Chen, Qimin Wang
{"title":"基于 EfficientNet 的深度迁移学习从现场图像中进行围岩分类","authors":"Xiaoying Zhuang, Wenjie Fan, Hongwei Guo, Xuefeng Chen, Qimin Wang","doi":"10.1007/s11709-024-1134-7","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an accurate, efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network (CNN). The state-of-the-art robust CNN model (EfficientNet) is applied to tunnel wall image recognition. Gaussian filtering, data augmentation and other data pre-processing techniques are used to improve the data quality and quantity. Combined with transfer learning, the generality, accuracy and efficiency of the deep learning (DL) model are further improved, and finally we achieve 89.96% accuracy. Compared with other state-of-the-art CNN architectures, such as ResNet and Inception-ResNet-V2 (IRV2), the presented deep transfer learning model is more stable, accurate and efficient. To reveal the rock classification mechanism of the proposed model, Gradient-weight Class Activation Map (Grad-CAM) visualizations are integrated into the model to enable its explainability and accountability. The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou, China, with great results.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrounding rock classification from onsite images with deep transfer learning based on EfficientNet\",\"authors\":\"Xiaoying Zhuang, Wenjie Fan, Hongwei Guo, Xuefeng Chen, Qimin Wang\",\"doi\":\"10.1007/s11709-024-1134-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an accurate, efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network (CNN). The state-of-the-art robust CNN model (EfficientNet) is applied to tunnel wall image recognition. Gaussian filtering, data augmentation and other data pre-processing techniques are used to improve the data quality and quantity. Combined with transfer learning, the generality, accuracy and efficiency of the deep learning (DL) model are further improved, and finally we achieve 89.96% accuracy. Compared with other state-of-the-art CNN architectures, such as ResNet and Inception-ResNet-V2 (IRV2), the presented deep transfer learning model is more stable, accurate and efficient. To reveal the rock classification mechanism of the proposed model, Gradient-weight Class Activation Map (Grad-CAM) visualizations are integrated into the model to enable its explainability and accountability. The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou, China, with great results.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1134-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1134-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Surrounding rock classification from onsite images with deep transfer learning based on EfficientNet
This paper proposes an accurate, efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network (CNN). The state-of-the-art robust CNN model (EfficientNet) is applied to tunnel wall image recognition. Gaussian filtering, data augmentation and other data pre-processing techniques are used to improve the data quality and quantity. Combined with transfer learning, the generality, accuracy and efficiency of the deep learning (DL) model are further improved, and finally we achieve 89.96% accuracy. Compared with other state-of-the-art CNN architectures, such as ResNet and Inception-ResNet-V2 (IRV2), the presented deep transfer learning model is more stable, accurate and efficient. To reveal the rock classification mechanism of the proposed model, Gradient-weight Class Activation Map (Grad-CAM) visualizations are integrated into the model to enable its explainability and accountability. The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou, China, with great results.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.