{"title":"面向高一新生的新型普通化学实验:基于微流控分子荧光光谱分析的转基因大豆检测","authors":"Pintao Li, Min Gu, Ghazala Ashraf, Huiwen Xiong, Fei Cun, Xuting Chen, Jilie Kong, Xueen Fang","doi":"10.1021/acs.jchemed.4c00668","DOIUrl":null,"url":null,"abstract":"In this experiment, we present a microfluidic-based molecular fluorescence spectroscopy method for analyzing nucleic acids to identify transgenic soybeans. This method is integrated into a General Chemistry Experiment course tailored for freshmen. The primary goals of this course are to deepen student’s understanding of some important knowledge points of general chemistry, introduce students to experimental techniques at the micro- and nanoscale, help students understand the principles of molecular fluorescence spectroscopy and enzyme reaction kinetics, elucidate the relationship between chemistry and its practical applications, stimulate their interest in chemistry, and provide multidisciplinary perspectives and thinking. Over the period from 2021 to 2023, more than 180 freshmen enrolled in this course, and over 30 universities in China have initiated the advancement of this course. Most students successfully completed the experiment, achieving high completion rate and promising results. Participating students improved their practical skills and the ability to work collaboratively in a laboratory setting, which led to numerous innovative ideas and insights in related areas. Positive feedback from the students confirmed that the predetermined learning objectives were successfully achieved.","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel General Chemistry Experiment for Freshmen: Transgenic Soybean Detection Based on Microfluidic Molecular Fluorescence Spectroscopy Analysis\",\"authors\":\"Pintao Li, Min Gu, Ghazala Ashraf, Huiwen Xiong, Fei Cun, Xuting Chen, Jilie Kong, Xueen Fang\",\"doi\":\"10.1021/acs.jchemed.4c00668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this experiment, we present a microfluidic-based molecular fluorescence spectroscopy method for analyzing nucleic acids to identify transgenic soybeans. This method is integrated into a General Chemistry Experiment course tailored for freshmen. The primary goals of this course are to deepen student’s understanding of some important knowledge points of general chemistry, introduce students to experimental techniques at the micro- and nanoscale, help students understand the principles of molecular fluorescence spectroscopy and enzyme reaction kinetics, elucidate the relationship between chemistry and its practical applications, stimulate their interest in chemistry, and provide multidisciplinary perspectives and thinking. Over the period from 2021 to 2023, more than 180 freshmen enrolled in this course, and over 30 universities in China have initiated the advancement of this course. Most students successfully completed the experiment, achieving high completion rate and promising results. Participating students improved their practical skills and the ability to work collaboratively in a laboratory setting, which led to numerous innovative ideas and insights in related areas. Positive feedback from the students confirmed that the predetermined learning objectives were successfully achieved.\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jchemed.4c00668\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jchemed.4c00668","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel General Chemistry Experiment for Freshmen: Transgenic Soybean Detection Based on Microfluidic Molecular Fluorescence Spectroscopy Analysis
In this experiment, we present a microfluidic-based molecular fluorescence spectroscopy method for analyzing nucleic acids to identify transgenic soybeans. This method is integrated into a General Chemistry Experiment course tailored for freshmen. The primary goals of this course are to deepen student’s understanding of some important knowledge points of general chemistry, introduce students to experimental techniques at the micro- and nanoscale, help students understand the principles of molecular fluorescence spectroscopy and enzyme reaction kinetics, elucidate the relationship between chemistry and its practical applications, stimulate their interest in chemistry, and provide multidisciplinary perspectives and thinking. Over the period from 2021 to 2023, more than 180 freshmen enrolled in this course, and over 30 universities in China have initiated the advancement of this course. Most students successfully completed the experiment, achieving high completion rate and promising results. Participating students improved their practical skills and the ability to work collaboratively in a laboratory setting, which led to numerous innovative ideas and insights in related areas. Positive feedback from the students confirmed that the predetermined learning objectives were successfully achieved.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.