{"title":"多元亚历山大广数,VI.元胞群和 2 分量联系","authors":"Lorenzo Traldi","doi":"arxiv-2408.11784","DOIUrl":null,"url":null,"abstract":"We prove two properties of the modules and quandles discussed in this series.\nFirst, the fundamental multivariate Alexander quandle $Q_A(L)$ is isomorphic to\nthe natural image of the fundamental quandle in the metabelian quotient\n$G(L)/G(L)''$ of the link group. Second, the medial quandle of a classical\n2-component link $L$ is determined by the reduced Alexander invariant of $L$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Alexander quandles, VI. Metabelian groups and 2-component links\",\"authors\":\"Lorenzo Traldi\",\"doi\":\"arxiv-2408.11784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove two properties of the modules and quandles discussed in this series.\\nFirst, the fundamental multivariate Alexander quandle $Q_A(L)$ is isomorphic to\\nthe natural image of the fundamental quandle in the metabelian quotient\\n$G(L)/G(L)''$ of the link group. Second, the medial quandle of a classical\\n2-component link $L$ is determined by the reduced Alexander invariant of $L$.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate Alexander quandles, VI. Metabelian groups and 2-component links
We prove two properties of the modules and quandles discussed in this series.
First, the fundamental multivariate Alexander quandle $Q_A(L)$ is isomorphic to
the natural image of the fundamental quandle in the metabelian quotient
$G(L)/G(L)''$ of the link group. Second, the medial quandle of a classical
2-component link $L$ is determined by the reduced Alexander invariant of $L$.