关于可嵌入 4 空间的 2 复数及其底层图的排除最小值

Agelos Georgakopoulos, Martin Winter
{"title":"关于可嵌入 4 空间的 2 复数及其底层图的排除最小值","authors":"Agelos Georgakopoulos, Martin Winter","doi":"arxiv-2408.12681","DOIUrl":null,"url":null,"abstract":"We study the potentially undecidable problem of whether a given 2-dimensional\nCW complex can be embedded into $\\mathbb{R}^4$. We provide operations that\npreserve embeddability, including joining and cloning of 2-cells, as well as\n$\\Delta\\mathrm Y$-transformations. We also construct a CW complex for which\n$\\mathrm Y\\Delta$-transformations do not preserve embeddability. We use these results to study 4-flat graphs, i.e., graphs that embed in\n$\\mathbb{R}^4$ after attaching any number of 2-cells to their cycles; a graph\nclass that naturally generalizes planarity and linklessness. We verify several\nconjectures of van der Holst; in particular, we prove that each of the 78\ngraphs of the Heawood family is an excluded minor for the class of 4-flat\ngraphs.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On 2-complexes embeddable in 4-space, and the excluded minors of their underlying graphs\",\"authors\":\"Agelos Georgakopoulos, Martin Winter\",\"doi\":\"arxiv-2408.12681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the potentially undecidable problem of whether a given 2-dimensional\\nCW complex can be embedded into $\\\\mathbb{R}^4$. We provide operations that\\npreserve embeddability, including joining and cloning of 2-cells, as well as\\n$\\\\Delta\\\\mathrm Y$-transformations. We also construct a CW complex for which\\n$\\\\mathrm Y\\\\Delta$-transformations do not preserve embeddability. We use these results to study 4-flat graphs, i.e., graphs that embed in\\n$\\\\mathbb{R}^4$ after attaching any number of 2-cells to their cycles; a graph\\nclass that naturally generalizes planarity and linklessness. We verify several\\nconjectures of van der Holst; in particular, we prove that each of the 78\\ngraphs of the Heawood family is an excluded minor for the class of 4-flat\\ngraphs.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个潜在的不可判定问题,即给定的二维CW复元是否可以嵌入$\mathbb{R}^4$。我们提供了保留嵌入性的操作,包括 2 单元的连接和克隆,以及 $\Delta\mathrm Y$ 变换。我们还构造了一个 CW 复数,其中的$\mathrm Y\Delta$ 变换不保留可嵌入性。我们利用这些结果来研究 4 平面图,即在其循环上附加任意数量的 2 单元后嵌入 $\mathbb{R}^4$ 的图;这是一种自然地概括了平面性和无链接性的图类。我们验证了 van der Holst 的几个猜想;特别是,我们证明了希沃德家族的 78 个图中的每一个都是 4 平面图类的排除次要图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On 2-complexes embeddable in 4-space, and the excluded minors of their underlying graphs
We study the potentially undecidable problem of whether a given 2-dimensional CW complex can be embedded into $\mathbb{R}^4$. We provide operations that preserve embeddability, including joining and cloning of 2-cells, as well as $\Delta\mathrm Y$-transformations. We also construct a CW complex for which $\mathrm Y\Delta$-transformations do not preserve embeddability. We use these results to study 4-flat graphs, i.e., graphs that embed in $\mathbb{R}^4$ after attaching any number of 2-cells to their cycles; a graph class that naturally generalizes planarity and linklessness. We verify several conjectures of van der Holst; in particular, we prove that each of the 78 graphs of the Heawood family is an excluded minor for the class of 4-flat graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信