三维小封面和链接

Vladimir Gorchakov
{"title":"三维小封面和链接","authors":"Vladimir Gorchakov","doi":"arxiv-2408.12557","DOIUrl":null,"url":null,"abstract":"We study certain orientation-preserving involutions on three-dimensional\nsmall covers. We prove that the quotient space of an orientable\nthree-dimensional small cover by such an involution belonging to the 2-torus is\nhomeomorphic to a connected sum of copies of $S^2 \\times S^1$. If this quotient\nspace is a 3-sphere, then the corresponding small cover is a two-fold branched\ncovering of the 3-sphere along a link. We provide a description of this link in\nterms of the polytope and the characteristic function.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Small Covers and Links\",\"authors\":\"Vladimir Gorchakov\",\"doi\":\"arxiv-2408.12557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study certain orientation-preserving involutions on three-dimensional\\nsmall covers. We prove that the quotient space of an orientable\\nthree-dimensional small cover by such an involution belonging to the 2-torus is\\nhomeomorphic to a connected sum of copies of $S^2 \\\\times S^1$. If this quotient\\nspace is a 3-sphere, then the corresponding small cover is a two-fold branched\\ncovering of the 3-sphere along a link. We provide a description of this link in\\nterms of the polytope and the characteristic function.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三维小盖上的某些保向卷积。我们证明,一个可定向的三维小盖的商空间通过这样一个属于2-torus的卷积是同构于$S^2 \times S^1$ 的副本的连通和的。如果这个商空间是一个 3 球体,那么相应的小封面就是 3 球体沿着一个链路的二折枝封面。我们提供了这个链接在多面体和特征函数方面的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Small Covers and Links
We study certain orientation-preserving involutions on three-dimensional small covers. We prove that the quotient space of an orientable three-dimensional small cover by such an involution belonging to the 2-torus is homeomorphic to a connected sum of copies of $S^2 \times S^1$. If this quotient space is a 3-sphere, then the corresponding small cover is a two-fold branched covering of the 3-sphere along a link. We provide a description of this link in terms of the polytope and the characteristic function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信