辫状线族的琼斯多项式行列式

Derya Asaner, Sanjay Kumar, Melody Molander, Andrew Pease, Anup Poudel
{"title":"辫状线族的琼斯多项式行列式","authors":"Derya Asaner, Sanjay Kumar, Melody Molander, Andrew Pease, Anup Poudel","doi":"arxiv-2408.13410","DOIUrl":null,"url":null,"abstract":"In 2012, Cohen, Dasbach, and Russell presented an algorithm to construct a\nweighted adjacency matrix for a given knot diagram. In the case of pretzel\nknots, it is shown that after evaluation, the determinant of the matrix\nrecovers the Jones polynomial. Although the Jones polynomial is known to be\n#P-hard by Jaeger, Vertigan, and Welsh, this presents a class of knots for\nwhich the Jones polynomial can be computed in polynomial time by using the\ndeterminant. In this paper, we extend these results by recovering the Jones\npolynomial as the determinant of a weighted adjacency matrix for certain\nsubfamilies of the braid group. Lastly, we compute the Kauffman polynomial of\n(2,q) torus knots in polynomial time using the balanced overlaid Tait graphs.\nThis is the first known example of generalizing the methodology of Cohen to a\nclass of quantum invariants which cannot be derived from the HOMFLYPT\npolynomial.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A determinant formula of the Jones polynomial for a family of braids\",\"authors\":\"Derya Asaner, Sanjay Kumar, Melody Molander, Andrew Pease, Anup Poudel\",\"doi\":\"arxiv-2408.13410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2012, Cohen, Dasbach, and Russell presented an algorithm to construct a\\nweighted adjacency matrix for a given knot diagram. In the case of pretzel\\nknots, it is shown that after evaluation, the determinant of the matrix\\nrecovers the Jones polynomial. Although the Jones polynomial is known to be\\n#P-hard by Jaeger, Vertigan, and Welsh, this presents a class of knots for\\nwhich the Jones polynomial can be computed in polynomial time by using the\\ndeterminant. In this paper, we extend these results by recovering the Jones\\npolynomial as the determinant of a weighted adjacency matrix for certain\\nsubfamilies of the braid group. Lastly, we compute the Kauffman polynomial of\\n(2,q) torus knots in polynomial time using the balanced overlaid Tait graphs.\\nThis is the first known example of generalizing the methodology of Cohen to a\\nclass of quantum invariants which cannot be derived from the HOMFLYPT\\npolynomial.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2012 年,科恩、达斯巴赫和罗素提出了一种为给定结图构建加权邻接矩阵的算法。在椒盐结的情况下,研究表明在求值后,矩阵的行列式可以恢复琼斯多项式。尽管 Jaeger、Vertigan 和 Welsh 已知琼斯多项式是#P-困难的,但这提出了一类结,对于这类结,利用行列式可以在多项式时间内计算出琼斯多项式。在本文中,我们扩展了这些结果,将琼斯多项式复原为辫状花序群某些子群的加权邻接矩阵的行列式。最后,我们利用平衡重叠泰特图在多项式时间内计算了(2,q)环结的考夫曼多项式。这是第一个将科恩的方法推广到一类量子不变式的已知例子,这些量子不变式无法从 HOMFLYPTpolynomial 中导出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A determinant formula of the Jones polynomial for a family of braids
In 2012, Cohen, Dasbach, and Russell presented an algorithm to construct a weighted adjacency matrix for a given knot diagram. In the case of pretzel knots, it is shown that after evaluation, the determinant of the matrix recovers the Jones polynomial. Although the Jones polynomial is known to be #P-hard by Jaeger, Vertigan, and Welsh, this presents a class of knots for which the Jones polynomial can be computed in polynomial time by using the determinant. In this paper, we extend these results by recovering the Jones polynomial as the determinant of a weighted adjacency matrix for certain subfamilies of the braid group. Lastly, we compute the Kauffman polynomial of (2,q) torus knots in polynomial time using the balanced overlaid Tait graphs. This is the first known example of generalizing the methodology of Cohen to a class of quantum invariants which cannot be derived from the HOMFLYPT polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信