强反转结的局部性和弗洛尔同源性

Aakash Parikh
{"title":"强反转结的局部性和弗洛尔同源性","authors":"Aakash Parikh","doi":"arxiv-2408.13892","DOIUrl":null,"url":null,"abstract":"We establish two spectral sequences in knot Floer homology associated to a\ndirected strongly invertible knot K: one from the knot Floer homology of K to a\ntwo dimensional vector space, and one from the singular knot Floer homology of\na singular knot associated to K to the knot Floer homology quotient knot of K.\nThe first of these spectral sequences is used to define a numerical invariant\nof strongly invertible knots.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization and the Floer homology of strongly invertible knots\",\"authors\":\"Aakash Parikh\",\"doi\":\"arxiv-2408.13892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish two spectral sequences in knot Floer homology associated to a\\ndirected strongly invertible knot K: one from the knot Floer homology of K to a\\ntwo dimensional vector space, and one from the singular knot Floer homology of\\na singular knot associated to K to the knot Floer homology quotient knot of K.\\nThe first of these spectral sequences is used to define a numerical invariant\\nof strongly invertible knots.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在与定向强可逆结 K 相关的结浮子同源性中建立了两个谱序列:一个是从 K 的结浮子同源性到二维向量空间,另一个是从与 K 相关的奇异结的奇异结浮子同源性到 K 的结浮子同源性商结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization and the Floer homology of strongly invertible knots
We establish two spectral sequences in knot Floer homology associated to a directed strongly invertible knot K: one from the knot Floer homology of K to a two dimensional vector space, and one from the singular knot Floer homology of a singular knot associated to K to the knot Floer homology quotient knot of K. The first of these spectral sequences is used to define a numerical invariant of strongly invertible knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信