相对列车轨道和端周期图谱

Yan Mary He, Chenxi Wu
{"title":"相对列车轨道和端周期图谱","authors":"Yan Mary He, Chenxi Wu","doi":"arxiv-2408.13401","DOIUrl":null,"url":null,"abstract":"We study endperiodic maps of an infinite graph with finitely many ends. We\nprove that any such map is homotopic to an endperiodic relative train track\nmap. Moreover, we show that the (largest) Perron-Frobenius eigenvalue of the\ntransition matrix is a canonical quantity associated to the map.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative train tracks and endperiodic graph maps\",\"authors\":\"Yan Mary He, Chenxi Wu\",\"doi\":\"arxiv-2408.13401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study endperiodic maps of an infinite graph with finitely many ends. We\\nprove that any such map is homotopic to an endperiodic relative train track\\nmap. Moreover, we show that the (largest) Perron-Frobenius eigenvalue of the\\ntransition matrix is a canonical quantity associated to the map.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究具有有限多个末端的无限图的末端周期映射。我们证明,任何这样的映射都与端周期相对列车轨迹映射同构。此外,我们还证明了过渡矩阵的(最大)Perron-Frobenius 特征值是与该映射相关的典型量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative train tracks and endperiodic graph maps
We study endperiodic maps of an infinite graph with finitely many ends. We prove that any such map is homotopic to an endperiodic relative train track map. Moreover, we show that the (largest) Perron-Frobenius eigenvalue of the transition matrix is a canonical quantity associated to the map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信