一般双曲3-manifolds上的角度结构

Ge Huabin, Jia Longsong, Zhang Faze
{"title":"一般双曲3-manifolds上的角度结构","authors":"Ge Huabin, Jia Longsong, Zhang Faze","doi":"arxiv-2408.14003","DOIUrl":null,"url":null,"abstract":"Let $M$ be a non-compact hyperbolic $3$-manifold with finite volume and\ntotally geodesic boundary components. By subdividing mixed ideal polyhedral\ndecompositions of $M$, under some certain topological conditions, we prove that\n$M$ has an ideal triangulation which admits an angle structure.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angle structure on general hyperbolic 3-manifolds\",\"authors\":\"Ge Huabin, Jia Longsong, Zhang Faze\",\"doi\":\"arxiv-2408.14003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a non-compact hyperbolic $3$-manifold with finite volume and\\ntotally geodesic boundary components. By subdividing mixed ideal polyhedral\\ndecompositions of $M$, under some certain topological conditions, we prove that\\n$M$ has an ideal triangulation which admits an angle structure.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $M$ 是一个具有有限体积和完全大地边界成分的非紧凑双曲$3$-manifold。通过细分 $M$ 的混合理想多面体分解,在某些拓扑条件下,我们证明 $M$ 有一个理想三角剖分,它允许一个角结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angle structure on general hyperbolic 3-manifolds
Let $M$ be a non-compact hyperbolic $3$-manifold with finite volume and totally geodesic boundary components. By subdividing mixed ideal polyhedral decompositions of $M$, under some certain topological conditions, we prove that $M$ has an ideal triangulation which admits an angle structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信