Rapid activation of PMS driven by bimetallic redox on transition metal selenides for sulfamethoxazole degradation: mechanism, degradation pathway and intermediates toxicity
BACKGROUND
The increasing presence of antibiotics in aquatic environments poses significant ecological risks, with sulfamethoxazole (SMX) being a prominent example due to its persistence and widespread use in medical and veterinary practices. Advanced oxidation processes, particularly those based on peroxymonosulfate (PMS), have shown promise in degrading such contaminants. This work explored the efficacy of a bimetallic selenide catalyst, FeSe2/MoSe2 (FM), synthesized via a hydrothermal method, for the rapid activation of PMS and subsequent degradation of SMX.
RESULTS
Over 95% SMX degradation was achieved with a 0.25 g/L catalyst dosage and 1.5 g/L PMS dosage, demonstrating that FM was an effective PMS activator capable of efficiently oxidizing SMX. The EPR tests and quenching experiments confirmed the presence of 1O2, SO4•– and •OH in the degradation system, with SO4•- predominating. The redox cycling of Mo with Fe was involved in the activation of PMS. Moreover, the DFT calculations of the SMX molecule revealed that the vulnerable sites were mainly in the vicinity of the sulfonamide group and the oxygen-containing group. The toxicity assessment disclosed that most of the primary degradation intermediates of SMX were toxic, while the further small molecule products were non-toxic.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.