组成结构的广义热-电-磁-弹性理论的动态混合边界传递问题

IF 0.8 4区 数学 Q2 MATHEMATICS
Tengiz Buchukuri, Otar Chkadua, David Natroshvili
{"title":"组成结构的广义热-电-磁-弹性理论的动态混合边界传递问题","authors":"Tengiz Buchukuri, Otar Chkadua, David Natroshvili","doi":"10.1515/gmj-2024-2051","DOIUrl":null,"url":null,"abstract":"In the present paper we investigate three-dimensional dynamical mixed boundary-transmission problems for composed body consisting of two adjacent anisotropic elastic components having a common interface surface. The two contacting elastic components are subject to different mathematical models: Green–Lindsay’s model of generalized thermo-electro-magneto-elasticity in one component and Green–Lindsay’s model of generalized thermo-elasticity in the other one. We assume that the composed elastic structure under consideration contains an interfacial crack. We prove the uniqueness and existence theorems in appropriate function spaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical mixed boundary-transmission problems of the generalized thermo-electro-magneto-elasticity theory for composed structures\",\"authors\":\"Tengiz Buchukuri, Otar Chkadua, David Natroshvili\",\"doi\":\"10.1515/gmj-2024-2051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we investigate three-dimensional dynamical mixed boundary-transmission problems for composed body consisting of two adjacent anisotropic elastic components having a common interface surface. The two contacting elastic components are subject to different mathematical models: Green–Lindsay’s model of generalized thermo-electro-magneto-elasticity in one component and Green–Lindsay’s model of generalized thermo-elasticity in the other one. We assume that the composed elastic structure under consideration contains an interfacial crack. We prove the uniqueness and existence theorems in appropriate function spaces.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2051\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2051","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了由两个相邻各向异性弹性成分组成的、具有共同界面表面的三维动力学混合边界传递问题。两个相接触的弹性元件采用不同的数学模型:其中一个部分采用格林-林赛的广义热-电-磁弹性模型,另一个部分采用格林-林赛的广义热弹性模型。我们假设所考虑的组成弹性结构包含一条界面裂缝。我们在适当的函数空间中证明了唯一性和存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical mixed boundary-transmission problems of the generalized thermo-electro-magneto-elasticity theory for composed structures
In the present paper we investigate three-dimensional dynamical mixed boundary-transmission problems for composed body consisting of two adjacent anisotropic elastic components having a common interface surface. The two contacting elastic components are subject to different mathematical models: Green–Lindsay’s model of generalized thermo-electro-magneto-elasticity in one component and Green–Lindsay’s model of generalized thermo-elasticity in the other one. We assume that the composed elastic structure under consideration contains an interfacial crack. We prove the uniqueness and existence theorems in appropriate function spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信