经典绳结的扭曲纺结

Mizuki Fukuda, Masaharu Ishikawa
{"title":"经典绳结的扭曲纺结","authors":"Mizuki Fukuda, Masaharu Ishikawa","doi":"arxiv-2409.00650","DOIUrl":null,"url":null,"abstract":"A $k$-twist spun knot is an $n+1$-dimensional knot in the $n+3$-dimensional\nsphere which is obtained from an $n$-dimensional knot in the $n+2$-dimensional\nsphere by applying an operation called a $k$-twist-spinning. This construction\nwas introduced by Zeeman in 1965. In this paper, we show that the\n$m_2$-twist-spinning of the $m_1$-twist-spinning of a classical knot is a\ntrivial $3$-knot in $S^5$ if $\\gcd(m_1,m_2)=1$. We also give a sufficient\ncondition for the $m_2$-twist-spinning of the $m_1$-twist-spinning of a\nclassical knot to be non-trivial.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twist spun knots of twist spun knots of classical knots\",\"authors\":\"Mizuki Fukuda, Masaharu Ishikawa\",\"doi\":\"arxiv-2409.00650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A $k$-twist spun knot is an $n+1$-dimensional knot in the $n+3$-dimensional\\nsphere which is obtained from an $n$-dimensional knot in the $n+2$-dimensional\\nsphere by applying an operation called a $k$-twist-spinning. This construction\\nwas introduced by Zeeman in 1965. In this paper, we show that the\\n$m_2$-twist-spinning of the $m_1$-twist-spinning of a classical knot is a\\ntrivial $3$-knot in $S^5$ if $\\\\gcd(m_1,m_2)=1$. We also give a sufficient\\ncondition for the $m_2$-twist-spinning of the $m_1$-twist-spinning of a\\nclassical knot to be non-trivial.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$k$-扭转旋结是$n+3$维球体中的一个$n+1$维旋结,它是由$n+2$维球体中的一个$n$维旋结通过一种叫做$k$-扭转旋结的操作得到的。这一构造由泽曼于 1965 年提出。在本文中,我们证明了如果 $/gcd(m_1,m_2)=1$,经典结的 $m_1$-twist-spinning 的 $m_2$-twist-spinning 在 $S^5$ 中是一个无条件的 $3$结。我们还给出了经典结的 $m_1$ 扭转旋转的 $m_2$ 扭转旋转为非三元结的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twist spun knots of twist spun knots of classical knots
A $k$-twist spun knot is an $n+1$-dimensional knot in the $n+3$-dimensional sphere which is obtained from an $n$-dimensional knot in the $n+2$-dimensional sphere by applying an operation called a $k$-twist-spinning. This construction was introduced by Zeeman in 1965. In this paper, we show that the $m_2$-twist-spinning of the $m_1$-twist-spinning of a classical knot is a trivial $3$-knot in $S^5$ if $\gcd(m_1,m_2)=1$. We also give a sufficient condition for the $m_2$-twist-spinning of the $m_1$-twist-spinning of a classical knot to be non-trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信