关于电缆和渐开线协变的说明

Kristen Hendricks, Abhishek Mallick
{"title":"关于电缆和渐开线协变的说明","authors":"Kristen Hendricks, Abhishek Mallick","doi":"arxiv-2409.02192","DOIUrl":null,"url":null,"abstract":"We prove a formula for the involutive concordance invariants of the cabled\nknots in terms of that of the companion knot and the pattern knot. As a\nconsequence, we show that any iterated cable of a knot with parameters of the\nform (odd,1) is not smoothly slice as long as either of the involutive\nconcordance invariants of the knot is nonzero. Our formula also gives new\nbounds for the unknotting number of a cabled knot, which are sometimes stronger\nthan other known bounds coming from knot Floer homology.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on cables and the involutive concordance invariants\",\"authors\":\"Kristen Hendricks, Abhishek Mallick\",\"doi\":\"arxiv-2409.02192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a formula for the involutive concordance invariants of the cabled\\nknots in terms of that of the companion knot and the pattern knot. As a\\nconsequence, we show that any iterated cable of a knot with parameters of the\\nform (odd,1) is not smoothly slice as long as either of the involutive\\nconcordance invariants of the knot is nonzero. Our formula also gives new\\nbounds for the unknotting number of a cabled knot, which are sometimes stronger\\nthan other known bounds coming from knot Floer homology.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们根据伴结和模式结的无关协整不变量证明了索结的无关协整不变量公式。因此,我们证明了只要绳结的任一渐开线协整不变式不为零,参数为(奇,1)形式的绳结的任何迭代绳结都不是平滑切分的。我们的公式还给出了缆索结的解结数的新边界,它有时比来自结浮子同源性的其他已知边界更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on cables and the involutive concordance invariants
We prove a formula for the involutive concordance invariants of the cabled knots in terms of that of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信