关于有限映射类群轨道的 Tykhyy 猜想

Samuel Bronstein, Arnaud Maret
{"title":"关于有限映射类群轨道的 Tykhyy 猜想","authors":"Samuel Bronstein, Arnaud Maret","doi":"arxiv-2409.04379","DOIUrl":null,"url":null,"abstract":"We classify the finite orbits of the mapping class group action on the\ncharacter variety of Deroin--Tholozan representations of punctured spheres. In\nparticular, we prove that the action has no finite orbits if the underlying\nsphere has 7 punctures or more. When the sphere has six punctures, we show that\nthere is a unique 1-parameter family of finite orbits. Our methods also recover\nTykhyy's classification of finite orbits for 5-punctured spheres. The proof is\ninductive and uses Lisovyy--Tykhyy's classification of finite mapping class\ngroup orbits for 4-punctured spheres as the base case for the induction. Our results on Deroin--Tholozan representations cover the last missing cases\nto complete the proof of Tykhyy's Conjecture on finite mapping class group\norbits for $\\mathrm{SL}_2\\mathbb{C}$ representations of punctured spheres,\nafter the recent work by Lam--Landesman--Litt.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"4300 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tykhyy's Conjecture on finite mapping class group orbits\",\"authors\":\"Samuel Bronstein, Arnaud Maret\",\"doi\":\"arxiv-2409.04379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the finite orbits of the mapping class group action on the\\ncharacter variety of Deroin--Tholozan representations of punctured spheres. In\\nparticular, we prove that the action has no finite orbits if the underlying\\nsphere has 7 punctures or more. When the sphere has six punctures, we show that\\nthere is a unique 1-parameter family of finite orbits. Our methods also recover\\nTykhyy's classification of finite orbits for 5-punctured spheres. The proof is\\ninductive and uses Lisovyy--Tykhyy's classification of finite mapping class\\ngroup orbits for 4-punctured spheres as the base case for the induction. Our results on Deroin--Tholozan representations cover the last missing cases\\nto complete the proof of Tykhyy's Conjecture on finite mapping class group\\norbits for $\\\\mathrm{SL}_2\\\\mathbb{C}$ representations of punctured spheres,\\nafter the recent work by Lam--Landesman--Litt.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"4300 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对映射类群作用在穿刺球的 Deroin--Tholozan 表示的特征多样性上的有限轨道进行了分类。特别是,我们证明了如果底层球体有 7 个或更多的穿刺,则该作用没有有限轨道。当球体有 6 个穿刺点时,我们证明存在一个唯一的 1 参数有限轨道族。我们的方法还恢复了蒂凯伊对 5 点球的有限轨道分类。证明是归纳式的,并使用 Lisovyy-Tykhyy 对 4 穿孔球的有限映射类群轨道的分类作为归纳的基例。在Lam--Landesman--Litt最近的工作之后,我们关于Deroin--Tholozan表示的结果涵盖了最后缺失的情况,从而完成了Tykhyy关于穿刺球$\mathrm{SL}_2mathbb{C}$表示的有限映射类群轨道猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tykhyy's Conjecture on finite mapping class group orbits
We classify the finite orbits of the mapping class group action on the character variety of Deroin--Tholozan representations of punctured spheres. In particular, we prove that the action has no finite orbits if the underlying sphere has 7 punctures or more. When the sphere has six punctures, we show that there is a unique 1-parameter family of finite orbits. Our methods also recover Tykhyy's classification of finite orbits for 5-punctured spheres. The proof is inductive and uses Lisovyy--Tykhyy's classification of finite mapping class group orbits for 4-punctured spheres as the base case for the induction. Our results on Deroin--Tholozan representations cover the last missing cases to complete the proof of Tykhyy's Conjecture on finite mapping class group orbits for $\mathrm{SL}_2\mathbb{C}$ representations of punctured spheres, after the recent work by Lam--Landesman--Litt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信