$\mathrm{PGL}_n(\mathbb{R})$-Hitchin分量的交映结构

Francis Bonahon, Yaşar Sözen, Hatice Zeybek
{"title":"$\\mathrm{PGL}_n(\\mathbb{R})$-Hitchin分量的交映结构","authors":"Francis Bonahon, Yaşar Sözen, Hatice Zeybek","doi":"arxiv-2409.04905","DOIUrl":null,"url":null,"abstract":"The $\\mathrm{PGL}_n(\\mathbb{R})$-Hitchin component of a closed oriented\nsurface is a preferred component of the character variety consisting of\nhomomorphisms from the fundamental group of the surface to the projective\nlinear group $\\mathrm{PGL}_n(\\mathbb{R})$. It admits a symplectic structure,\ndefined by the Atiyah-Bott-Goldman symplectic form. The main result of the\narticle is an explicit computation of this symplectic form in terms of certain\nglobal coordinates for the Hitchin component. A remarkable feature of this\nexpression is that its coefficients are constant.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The symplectic structure of the $\\\\mathrm{PGL}_n(\\\\mathbb{R})$-Hitchin component\",\"authors\":\"Francis Bonahon, Yaşar Sözen, Hatice Zeybek\",\"doi\":\"arxiv-2409.04905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\mathrm{PGL}_n(\\\\mathbb{R})$-Hitchin component of a closed oriented\\nsurface is a preferred component of the character variety consisting of\\nhomomorphisms from the fundamental group of the surface to the projective\\nlinear group $\\\\mathrm{PGL}_n(\\\\mathbb{R})$. It admits a symplectic structure,\\ndefined by the Atiyah-Bott-Goldman symplectic form. The main result of the\\narticle is an explicit computation of this symplectic form in terms of certain\\nglobal coordinates for the Hitchin component. A remarkable feature of this\\nexpression is that its coefficients are constant.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

封闭定向曲面的$\mathrm{PGL}_n(\mathbb{R})$-Hitchin分量是由曲面基群到投影线性群$\mathrm{PGL}_n(\mathbb{R})$的同调组成的特征多样性的优选分量。它具有交映结构,由 Atiyah-Bott-Goldman 交映形式定义。这篇文章的主要结果是用希钦分量的全局坐标明确计算了这个交映形式。这个表达式的一个显著特点是它的系数是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The symplectic structure of the $\mathrm{PGL}_n(\mathbb{R})$-Hitchin component
The $\mathrm{PGL}_n(\mathbb{R})$-Hitchin component of a closed oriented surface is a preferred component of the character variety consisting of homomorphisms from the fundamental group of the surface to the projective linear group $\mathrm{PGL}_n(\mathbb{R})$. It admits a symplectic structure, defined by the Atiyah-Bott-Goldman symplectic form. The main result of the article is an explicit computation of this symplectic form in terms of certain global coordinates for the Hitchin component. A remarkable feature of this expression is that its coefficients are constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信