服部-斯通定理的明确公式及其应用

Ping Li, Wangyang Lin
{"title":"服部-斯通定理的明确公式及其应用","authors":"Ping Li, Wangyang Lin","doi":"arxiv-2409.05107","DOIUrl":null,"url":null,"abstract":"We employ combinatorial techniques to present an explicit formula for the\ncoefficients in front of Chern classes involving in the Hattori-Stong\nintegrability conditions. We also give an evenness condition for the signature\nof stably almost-complex manifolds in terms of Chern numbers. As an\napplication, it can be showed that the signature of a $2n$-dimensional stably\nalmost-complex manifold whose possibly nonzero Chern numbers being $c_n$ and\n$c_ic_{n-i}$ is even, which particularly rules out the existence of such\nstructure on rational projective planes. Some other related results and remarks\nare also discussed in this article.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit formulas for the Hattori-Stong theorem and applications\",\"authors\":\"Ping Li, Wangyang Lin\",\"doi\":\"arxiv-2409.05107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ combinatorial techniques to present an explicit formula for the\\ncoefficients in front of Chern classes involving in the Hattori-Stong\\nintegrability conditions. We also give an evenness condition for the signature\\nof stably almost-complex manifolds in terms of Chern numbers. As an\\napplication, it can be showed that the signature of a $2n$-dimensional stably\\nalmost-complex manifold whose possibly nonzero Chern numbers being $c_n$ and\\n$c_ic_{n-i}$ is even, which particularly rules out the existence of such\\nstructure on rational projective planes. Some other related results and remarks\\nare also discussed in this article.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们运用组合技术,给出了涉及服部-强可操作性条件的车恩类前系数的明确公式。我们还给出了稳定近复流形签名的偶数条件。作为应用,可以证明一个 2n$ 维的稳定近复流形的签名是偶数,其可能的非零 Chern 数是 $c_n$ 和 $c_ic_{n-i}$,这就特别排除了在有理投影平面上存在这种结构的可能性。本文还讨论了其他一些相关结果和评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit formulas for the Hattori-Stong theorem and applications
We employ combinatorial techniques to present an explicit formula for the coefficients in front of Chern classes involving in the Hattori-Stong integrability conditions. We also give an evenness condition for the signature of stably almost-complex manifolds in terms of Chern numbers. As an application, it can be showed that the signature of a $2n$-dimensional stably almost-complex manifold whose possibly nonzero Chern numbers being $c_n$ and $c_ic_{n-i}$ is even, which particularly rules out the existence of such structure on rational projective planes. Some other related results and remarks are also discussed in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信