从唐纳森对角线化的族的外结闭曲面

Hokuto Konno, Abhishek Mallick, Masaki Taniguchi
{"title":"从唐纳森对角线化的族的外结闭曲面","authors":"Hokuto Konno, Abhishek Mallick, Masaki Taniguchi","doi":"arxiv-2409.07287","DOIUrl":null,"url":null,"abstract":"We introduce a method to detect exotic surfaces without explicitly using a\nsmooth 4-manifold invariant or an invariant of a 4-manifold-surface pair in the\nconstruction. Our main tools are two versions of families (Seiberg-Witten)\ngeneralizations of Donaldson's diagonalization theorem, including a real and\nfamilies version of the diagonalization. This leads to an example of a pair of\nexotically knotted $\\mathbb{R}P^2$'s embedded in a closed 4-manifold whose\ncomplements are diffeomorphic, making it the first example of a non-orientable\nsurface with this property. In particular, any invariant of a\n4-manifold-surface pair (including invariants from real Seiberg-Witten theory\nsuch as Miyazawa's invariant) fails to detect such an exotic $\\mathbb{R} P^2$.\nOne consequence of our construction reveals that non-effective embeddings of\ncorks can still be useful in pursuit of exotica. Precisely, starting with an\nembedding of a cork $C$ in certain a 4-manifold $X$ where the cork-twist does\nnot change the diffeomorphism type of $X$, we give a construction that provides\nexamples of exotically knotted spheres and $\\mathbb{R}P^2$'s with diffeomorphic\ncomplements in $ C \\# S^2 \\times S^2 \\subset X \\# S^2 \\times S^2$ or $C \\#\n\\mathbb{C}P^2 \\subset X \\# \\mathbb{C}P^2 $. In another direction, we provide\ninfinitely many exotically knotted embeddings of orientable surfaces, closed\nsurface links, and 3-spheres with diffeomorphic complements in once stabilized\ncorks, and show some of these surfaces survive arbitrarily many internal\nstabilizations. By combining similar methods with Gabai's 4D light-bulb\ntheorem, we also exhibit arbitrarily large difference between algebraic and\ngeometric intersections of certain family of 2-spheres, embedded in a\n4-manifold.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exotically knotted closed surfaces from Donaldson's diagonalization for families\",\"authors\":\"Hokuto Konno, Abhishek Mallick, Masaki Taniguchi\",\"doi\":\"arxiv-2409.07287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method to detect exotic surfaces without explicitly using a\\nsmooth 4-manifold invariant or an invariant of a 4-manifold-surface pair in the\\nconstruction. Our main tools are two versions of families (Seiberg-Witten)\\ngeneralizations of Donaldson's diagonalization theorem, including a real and\\nfamilies version of the diagonalization. This leads to an example of a pair of\\nexotically knotted $\\\\mathbb{R}P^2$'s embedded in a closed 4-manifold whose\\ncomplements are diffeomorphic, making it the first example of a non-orientable\\nsurface with this property. In particular, any invariant of a\\n4-manifold-surface pair (including invariants from real Seiberg-Witten theory\\nsuch as Miyazawa's invariant) fails to detect such an exotic $\\\\mathbb{R} P^2$.\\nOne consequence of our construction reveals that non-effective embeddings of\\ncorks can still be useful in pursuit of exotica. Precisely, starting with an\\nembedding of a cork $C$ in certain a 4-manifold $X$ where the cork-twist does\\nnot change the diffeomorphism type of $X$, we give a construction that provides\\nexamples of exotically knotted spheres and $\\\\mathbb{R}P^2$'s with diffeomorphic\\ncomplements in $ C \\\\# S^2 \\\\times S^2 \\\\subset X \\\\# S^2 \\\\times S^2$ or $C \\\\#\\n\\\\mathbb{C}P^2 \\\\subset X \\\\# \\\\mathbb{C}P^2 $. In another direction, we provide\\ninfinitely many exotically knotted embeddings of orientable surfaces, closed\\nsurface links, and 3-spheres with diffeomorphic complements in once stabilized\\ncorks, and show some of these surfaces survive arbitrarily many internal\\nstabilizations. By combining similar methods with Gabai's 4D light-bulb\\ntheorem, we also exhibit arbitrarily large difference between algebraic and\\ngeometric intersections of certain family of 2-spheres, embedded in a\\n4-manifold.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种检测奇异曲面的方法,而无需在构造中明确使用光滑四芒星不变量或四芒星曲面对的不变量。我们的主要工具是唐纳森对角线化定理的两个族(塞伯格-维滕)广义版本,包括对角线化的实数和族版本。这引出了一个例子:一对外结$\mathbb{R}P^2$嵌入到一个封闭的4-manifold中,其复数是差分同构的,这使它成为具有这一性质的非可取向曲面的第一个例子。特别是,4-manifold-曲面对的任何不变式(包括宫泽不变式等来自实塞伯格-维滕理论的不变式)都无法检测到这样一个奇异的$/mathbb{R} P^2$.我们的构造的一个结果揭示出,在追求奇异性时,叉形的非有效嵌入仍然是有用的。确切地说,从软木塞$C$在某个4-manifold $X$中的嵌入开始,软木塞扭转并不改变$X$的衍射类型、我们给出了一种构造,它提供了在 $ C \# S^2 \times S^2 \subset X \# S^2 \times S^2$ 或 $ C \#\mathbb{C}P^2 \subset X \# \mathbb{C}P^2$ 中具有差分同构复数的外结球体和 $\mathbb{R}P^2$ 的例子。在另一个方向上,我们提供了无限多的可定向曲面、闭合曲面链接、3-球体的外结嵌入,这些嵌入在一次稳定叉中具有差分补集,并证明了其中一些曲面在任意多的内部稳定化中存活下来。通过将类似的方法与加拜的四维光球定理相结合,我们还展示了嵌入四曲面的某些二球体族的代数交集与几何交集之间的任意大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exotically knotted closed surfaces from Donaldson's diagonalization for families
We introduce a method to detect exotic surfaces without explicitly using a smooth 4-manifold invariant or an invariant of a 4-manifold-surface pair in the construction. Our main tools are two versions of families (Seiberg-Witten) generalizations of Donaldson's diagonalization theorem, including a real and families version of the diagonalization. This leads to an example of a pair of exotically knotted $\mathbb{R}P^2$'s embedded in a closed 4-manifold whose complements are diffeomorphic, making it the first example of a non-orientable surface with this property. In particular, any invariant of a 4-manifold-surface pair (including invariants from real Seiberg-Witten theory such as Miyazawa's invariant) fails to detect such an exotic $\mathbb{R} P^2$. One consequence of our construction reveals that non-effective embeddings of corks can still be useful in pursuit of exotica. Precisely, starting with an embedding of a cork $C$ in certain a 4-manifold $X$ where the cork-twist does not change the diffeomorphism type of $X$, we give a construction that provides examples of exotically knotted spheres and $\mathbb{R}P^2$'s with diffeomorphic complements in $ C \# S^2 \times S^2 \subset X \# S^2 \times S^2$ or $C \# \mathbb{C}P^2 \subset X \# \mathbb{C}P^2 $. In another direction, we provide infinitely many exotically knotted embeddings of orientable surfaces, closed surface links, and 3-spheres with diffeomorphic complements in once stabilized corks, and show some of these surfaces survive arbitrarily many internal stabilizations. By combining similar methods with Gabai's 4D light-bulb theorem, we also exhibit arbitrarily large difference between algebraic and geometric intersections of certain family of 2-spheres, embedded in a 4-manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信