关于叶状 3 球束不变量的说明

Nils Prigge
{"title":"关于叶状 3 球束不变量的说明","authors":"Nils Prigge","doi":"arxiv-2409.06408","DOIUrl":null,"url":null,"abstract":"In this note we prove that $H^*(\\text{BSO}(4);\\mathbb{Q})$ injects into the\ngroup cohomology of $\\text{Diff}^+(S^{3})$ with rational coefficients. The\nproof is based on an idea of Nariman who proved that the monomials in the Euler\nand Pontrjagin classes are nontrivial in\n$H^*(\\text{BDiff}_+^{\\delta}(S^{2n-1});\\mathbb{Q})$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on invariants of foliated 3-sphere bundles\",\"authors\":\"Nils Prigge\",\"doi\":\"arxiv-2409.06408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we prove that $H^*(\\\\text{BSO}(4);\\\\mathbb{Q})$ injects into the\\ngroup cohomology of $\\\\text{Diff}^+(S^{3})$ with rational coefficients. The\\nproof is based on an idea of Nariman who proved that the monomials in the Euler\\nand Pontrjagin classes are nontrivial in\\n$H^*(\\\\text{BDiff}_+^{\\\\delta}(S^{2n-1});\\\\mathbb{Q})$.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们证明了 $H^*(\text{BSO}(4);\mathbb{Q})$ 注入到 $\text{Diff}^+(S^{3})$ 的群同调中具有有理系数。这个证明是基于纳里曼的一个想法,他证明了欧拉类和庞特贾金类中的单项式在$H^*(\text{BDiff}_+^{\delta}(S^{2n-1});\mathbb{Q})$ 中是非等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on invariants of foliated 3-sphere bundles
In this note we prove that $H^*(\text{BSO}(4);\mathbb{Q})$ injects into the group cohomology of $\text{Diff}^+(S^{3})$ with rational coefficients. The proof is based on an idea of Nariman who proved that the monomials in the Euler and Pontrjagin classes are nontrivial in $H^*(\text{BDiff}_+^{\delta}(S^{2n-1});\mathbb{Q})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信