强耦合下的弗洛里希极子:第二部分--能量-动量关系和有效质量

Morris Brooks, Robert Seiringer
{"title":"强耦合下的弗洛里希极子:第二部分--能量-动量关系和有效质量","authors":"Morris Brooks, Robert Seiringer","doi":"10.1007/s10240-024-00150-0","DOIUrl":null,"url":null,"abstract":"<p>We study the Fröhlich polaron model in <span>\\(\\mathbf {R}^{3}\\)</span>, and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as <span>\\(\\alpha ^{4}\\)</span> for large coupling constant <span>\\(\\alpha \\)</span>.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass\",\"authors\":\"Morris Brooks, Robert Seiringer\",\"doi\":\"10.1007/s10240-024-00150-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Fröhlich polaron model in <span>\\\\(\\\\mathbf {R}^{3}\\\\)</span>, and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as <span>\\\\(\\\\alpha ^{4}\\\\)</span> for large coupling constant <span>\\\\(\\\\alpha \\\\)</span>.</p>\",\"PeriodicalId\":516319,\"journal\":{\"name\":\"Publications mathématiques de l'IHÉS\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications mathématiques de l'IHÉS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10240-024-00150-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00150-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 \(\mathbf {R}^{3}\) 中的弗洛里希极子模型,并证明了其基态能量作为总动量函数的下限。该下界在大耦合时渐近尖锐。结合早先证明的相应上界(Mitrouskas 等人在 Forum Math. Sigma 11:1-52, 2023),它表明能量在连续阈值以下近似抛物线,极子的有效质量(定义为抛物线的半直角)由著名的兰道-佩卡公式给出。特别是,对于大耦合常数\(\alpha \),它发散为\(\alpha ^{4}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fröhlich polaron at strong coupling: Part II — Energy-momentum relation and effective mass

We study the Fröhlich polaron model in \(\mathbf {R}^{3}\), and prove a lower bound on its ground state energy as a function of the total momentum. The bound is asymptotically sharp at large coupling. In combination with a corresponding upper bound proved earlier (Mitrouskas et al. in Forum Math. Sigma 11:1–52, 2023), it shows that the energy is approximately parabolic below the continuum threshold, and that the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the celebrated Landau–Pekar formula. In particular, it diverges as \(\alpha ^{4}\) for large coupling constant \(\alpha \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信