k 规则序列生成函数的径向拟数

IF 0.6 4区 数学 Q3 MATHEMATICS
MICHAEL COONS, JOHN LIND
{"title":"k 规则序列生成函数的径向拟数","authors":"MICHAEL COONS, JOHN LIND","doi":"10.1017/s0004972724000480","DOIUrl":null,"url":null,"abstract":"<p>We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, <span>Proc. Amer. Math. Soc.</span> <span>145</span>(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, <span>Int. J. Number Theory</span>, to appear].</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"37 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RADIAL ASYMPTOTICS OF GENERATING FUNCTIONS OF k-REGULAR SEQUENCES\",\"authors\":\"MICHAEL COONS, JOHN LIND\",\"doi\":\"10.1017/s0004972724000480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, <span>Proc. Amer. Math. Soc.</span> <span>145</span>(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, <span>Int. J. Number Theory</span>, to appear].</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000480\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000480","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了贝尔和库恩斯定理的新证明['马勒函数的超越性检验',Proc.Amer.Math.145(3)(2017),1061-1070]关于作为正则序列生成函数的马勒函数的前阶径向渐近性的新证明。我们的方法允许我们对贝尔和库恩斯证明存在的振荡进行描述。这扩展了 Poulet 和 Rivoal 的最新成果['马勒函数的径向行为',《国际数论杂志》,待出版]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RADIAL ASYMPTOTICS OF GENERATING FUNCTIONS OF k-REGULAR SEQUENCES

We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, Proc. Amer. Math. Soc. 145(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, Int. J. Number Theory, to appear].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信