单向偶四次方三项式

IF 0.6 4区 数学 Q3 MATHEMATICS
LENNY JONES
{"title":"单向偶四次方三项式","authors":"LENNY JONES","doi":"10.1017/s0004972724000510","DOIUrl":null,"url":null,"abstract":"<p>A monic polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)\\in {\\mathbb Z}[x]$</span></span></img></span></span> of degree <span>N</span> is called <span>monogenic</span> if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is irreducible over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Q}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\{1,\\theta ,\\theta ^2,\\ldots ,\\theta ^{N-1}\\}$</span></span></img></span></span> is a basis for the ring of integers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Q}(\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(\\theta )=0$</span></span></img></span></span>. We prove that there exist exactly three distinct monogenic trinomials of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$x^4+bx^2+d$</span></span></img></span></span> whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"65 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MONOGENIC EVEN QUARTIC TRINOMIALS\",\"authors\":\"LENNY JONES\",\"doi\":\"10.1017/s0004972724000510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A monic polynomial <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)\\\\in {\\\\mathbb Z}[x]$</span></span></img></span></span> of degree <span>N</span> is called <span>monogenic</span> if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(x)$</span></span></img></span></span> is irreducible over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb Q}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{1,\\\\theta ,\\\\theta ^2,\\\\ldots ,\\\\theta ^{N-1}\\\\}$</span></span></img></span></span> is a basis for the ring of integers of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb Q}(\\\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f(\\\\theta )=0$</span></span></img></span></span>. We prove that there exist exactly three distinct monogenic trinomials of the form <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240912125559562-0272:S0004972724000510:S0004972724000510_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$x^4+bx^2+d$</span></span></img></span></span> whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000510\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 $f(x)$ 在 ${\mathbb Q}$ 上是不可约的,并且 ${1、\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ 是 ${\mathbb Q}(\theta )$ 的整数环的基,其中 $f(\theta )=0$.我们证明恰好存在三个不同的形式为 $x^4+bx^2+d$ 的单元三项式,它们的伽罗瓦群是阶数为 4 的循环群。我们还证明了当伽罗瓦群不是循环群时,情况会截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MONOGENIC EVEN QUARTIC TRINOMIALS

A monic polynomial $f(x)\in {\mathbb Z}[x]$ of degree N is called monogenic if $f(x)$ is irreducible over ${\mathbb Q}$ and $\{1,\theta ,\theta ^2,\ldots ,\theta ^{N-1}\}$ is a basis for the ring of integers of ${\mathbb Q}(\theta )$, where $f(\theta )=0$. We prove that there exist exactly three distinct monogenic trinomials of the form $x^4+bx^2+d$ whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信