关于受热粘性流体运动的奥伯贝克-布西尼斯克模型

IF 1 4区 数学 Q1 MATHEMATICS
Angela Iannelli
{"title":"关于受热粘性流体运动的奥伯贝克-布西尼斯克模型","authors":"Angela Iannelli","doi":"10.1515/math-2024-0032","DOIUrl":null,"url":null,"abstract":"This article surveys some results in the study of Iannelli [<jats:italic>Su un modello di Oberbeck-Boussinesq relativo al moto di un fluido viscoso soggetto a riscaldamento</jats:italic>, Fisica Matematica, Istituto Lombardo (rend. Sc.) A 121 (1987), 145–191], in which the motion of a viscous, compressible fluid in a two-dimensional domain, subject to heating at the walls, is studied. A global existence and uniqueness theorem for the time-dependent problem is given, and also, under more stringent assumptions, an existence and uniqueness theorem in the stationary case is given. A theorem on the asymptotic behavior for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0032_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>t</m:mi> <m:mo>→</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>t\\to \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the time-dependent solutions is proved.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an Oberbeck-Boussinesq model relating to the motion of a viscous fluid subject to heating\",\"authors\":\"Angela Iannelli\",\"doi\":\"10.1515/math-2024-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article surveys some results in the study of Iannelli [<jats:italic>Su un modello di Oberbeck-Boussinesq relativo al moto di un fluido viscoso soggetto a riscaldamento</jats:italic>, Fisica Matematica, Istituto Lombardo (rend. Sc.) A 121 (1987), 145–191], in which the motion of a viscous, compressible fluid in a two-dimensional domain, subject to heating at the walls, is studied. A global existence and uniqueness theorem for the time-dependent problem is given, and also, under more stringent assumptions, an existence and uniqueness theorem in the stationary case is given. A theorem on the asymptotic behavior for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0032_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>t</m:mi> <m:mo>→</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>t\\\\to \\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the time-dependent solutions is proved.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了 Iannelli [Su un modello di Oberbeck-Boussinesq relativo al moto di un fluido viscoso soggetto a riscaldamento, Fisica Matematica, Istituto Lombardo (rend. Sc.) A 121 (1987), 145-191] 的研究中的一些结果,其中研究了粘性可压缩流体在二维域中受壁面加热影响的运动。给出了时变问题的全局存在性和唯一性定理,并在更严格的假设条件下给出了静止情况下的存在性和唯一性定理。证明了时变解在 t → ∞ t\to \infty 时的渐近行为定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an Oberbeck-Boussinesq model relating to the motion of a viscous fluid subject to heating
This article surveys some results in the study of Iannelli [Su un modello di Oberbeck-Boussinesq relativo al moto di un fluido viscoso soggetto a riscaldamento, Fisica Matematica, Istituto Lombardo (rend. Sc.) A 121 (1987), 145–191], in which the motion of a viscous, compressible fluid in a two-dimensional domain, subject to heating at the walls, is studied. A global existence and uniqueness theorem for the time-dependent problem is given, and also, under more stringent assumptions, an existence and uniqueness theorem in the stationary case is given. A theorem on the asymptotic behavior for t t\to \infty of the time-dependent solutions is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信